Skip to main content
Log in

Analysis of glutamate receptors in primary cultured neurons from fetal rat forebrain

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In order to further analyze the development of glutamatergic pathways in neuronal cells, the expression of excitatory amino acid receptors was studied in a model of neurons in primary culture by measuring the specific binding of L-[3H]glutamate under various incubation conditions in 8-day-old intact living neurons isolated from the embryonic rat forebrain, as well as in membrane preparations from these cultures and from newborn rat forebrain. In addition, the receptor responsiveness to glutamate was assessed by studying the uptake of tetraphenylphosphonium (TPP+) which reflects membrane polarization. In the presence of a potent inhibitor of glutamate uptake, the radioligand bound to a total number of sites of 36.7 pmol/mg protein in intact cells incubated in a Tris buffer containing Na+, Ca2+, and Cl, with a Kd around 2 μM. In the absence of the above ions, [3H]glutamate specific binding diminished to 14.2 pmol/mg protein with a Kd-value of 550 nM. Under both of the above conditions, similar Kd were obtained in membranes isolated from cultures and from the newborn brain. However, Bmax-values were significantly lower in culture membranes than in intact cells or newborn membranes. Displacement studies showed that NMDA was the most potent compound to inhibit [3H]glutamate binding in membranes obtained from cultured neurons as well as from the newborn brain, whereas quisqualate, AMPA, kainate andtrans-ACPD were equally effective. According to these data and to the ionic dependence of glutamate binding, it was concluded that cultured neurons from the rat embryo forebrain express various glutamate receptor subtypes, mainly L-AP4 and NMDA receptors, with characteristics close to those in the newborn brain, and which display functional properties since a transient cell exposure to glutamate led to a 70% inhibition of [3H]TPP+ uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sahai, S. 1990. Glutamate in the mammalian CNS. Eur. Arch. Psychiatry Clin. Neurosci. 240:121–133.

    Google Scholar 

  2. Zorumski, C. F., and Olney, J. W. 1993. Excitotoxic neuronal damage and neuropsychiatric disorders. Pharmac. Ther. 59:145–162.

    Google Scholar 

  3. Balazs, R., Hack, N., and Jorgensen, O. S. 1988. Stimulation of N-methyl-D-aspartate receptor as a trophic effect on differentiating cerebellar granule cells. Neurosci. Lett. 87:80–86.

    Google Scholar 

  4. Mattson, M. P., Lee, R. E., Adams, M. E., Guthrie, P. B., and Kater, S. B. 1988. Interactions between entorhinal axons and target hippocampal neurons: a role for glutamate in the development of hippocampal circuitry. Neuron 1:865–876.

    Google Scholar 

  5. Van Harreveld, A., and Fifkova, E. 1974. Involvement of glutamate in memory formation. Brain Res. 81:455–467.

    Google Scholar 

  6. Lipton, S. A., and Rosenberg, P. A. 1994. Excitatory amino acids as a final common pathway for neurologic disorders. New Engl. J. Med. 330:613–622.

    Google Scholar 

  7. Cunningham, M. D., Ferkany, J. W., and Enna, S. J. 1993. Excitatory amino acid receptors: a gallery of new targets for pharmacological intervention. Life Sci. 54:135–148.

    Google Scholar 

  8. Trombley, P. Q., and Westbrook, G. L. 1992. L-AP4 inhibits calcium currents and synatic transmission via a G-protein-coupled glutamate receptor. J. Neurosci. 12:2043–2050.

    Google Scholar 

  9. Saugstad, J. A., Kinzie, J. M., Mulvihill, E. R., Segerson, T. P., and Westbrook, G. L. 1994. Cloning and expression of a new member of the L-2-amino-4-phosphonobutyric acid-sensitive class of metabotropic glutamate receptors. Mol. Pharmacol. 45:367–372.

    Google Scholar 

  10. Mena, E. E., Fagg, G. E., and Cotman, C. W. 1982. Chloride ions enhancel-glutamate binding to rat brain synaptic membranes. Brain Res. 243:378–381.

    Google Scholar 

  11. Foster, A., and Fagg, G. 1984. Acidic amino acid binding sites in mammalian neuronal membranes: their characteristics and relationship to synaptic receptors. Brain Res. Rev. 7:103–164.

    Google Scholar 

  12. Nadler, J. V., Wang, A., and Wehring, L. L. 1985. Binding sites forl-[3H]glutamate on hippocampal synaptic membranes: three populations differentially affected by chloride and calcium ions. J. Neurochem. 44:1791–1798.

    Google Scholar 

  13. Bridges, R. J., Nieto-Sampedro, M., Kadri, M., and Cotman, C. W. 1987. A novel chloride-dependent L-[3H]glutamate binding site in astrocyte membranes. J. Neurochem. 48:1709–1715.

    Google Scholar 

  14. Lichtshtein, D., Kaback, H. R., and Blume, A. J. 1979. Use of a lipophilic cation for determination of membrane potential in neuroblastoma-glioma hybrid cell suspensions. Proc. Natl. Acad. Sci. USA. 76:650–654.

    Google Scholar 

  15. Daval, J. L., Koziel, V., and Nicolas, F. 1991. Functional changes in cultured neurons following transient asphyxia. NeuroReport 2: 97–100.

    Google Scholar 

  16. Nicolas, F., Oillet, J., Koziel, V., and Daval, J. L. 1994. Characterization of adenosine receptors in a model of cultured neurons from rat forebrain. Neurochem. Res. 19:507–515.

    Google Scholar 

  17. Bottenstein, J. F., and Sato, G. 1979. Growth of a neuroblastoma cell line in serum-free supplemented medium. Proc. Natl. Acad. Sci. USA 76:514–517.

    Google Scholar 

  18. Fagg, G. E., Mena, E. E., Monaghan, D. T., and Cotman, C. W. 1983. Freezing eliminates a specific population ofl-glutamate receptors in synaptic membranes. Neurosci. Lett. 38:157–162.

    Google Scholar 

  19. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    Google Scholar 

  20. Roberts, P. J., and Watkins, J. C. 1975. Structural requirements for the inhibition of glutamate uptake by glia and nerve endings. Brain Res. 85:120–125.

    Google Scholar 

  21. Monahan, J. B., and Michel, J. 1987. Identification and characterization of an N-methyl-D-aspartate-specific L-[3H]glutamate recognition site in synaptic plasma membranes. J. Neurochem. 48: 1699–1708.

    Google Scholar 

  22. Widdowson, P. S., Trainor, A., and Lock, E. A. 1995. NMDA receptors in rat cerebellum and forebrain: subtle differences in pharmacology and modulation. J. Neurochem. 64:651–661.

    Google Scholar 

  23. Friedman, J. E., Lelkes, P. I., Lavie, E., Rosenheck, K., Schneeweiss, F., and Schneider, A. S. 1985. Membrane potential and catecholamine secretion by bovine adrenal chromaffin cells: use of tetraphenylphosphonium distribution and carbocyanine dye fluorescence. J. Neurochem. 44:1391–1402.

    Google Scholar 

  24. Kirk, R. E. 1968. Experimental design: procedures for the behavioral neurosciences. Brooks-Cole, Belmont, CA.

    Google Scholar 

  25. Laerum, O. D., Steinsvag, S., and Bjerkvig, R. 1985. Cell and tissue culture of the central nervous system: recent developments and current applications. Acta Neurol. Scand. 72:529–549.

    Google Scholar 

  26. Cestelli, A., Savattieri, G., Salemi, G., and Di Liegro, I. 1992. Neuronal cell cultures: a tool for investigations in developmental neurobiology. Neurochem. Res. 17:1163–1180.

    Google Scholar 

  27. Dichter, M. A. 1978. Rat cortical neurons in cell culture: culture methods, cell morphology, electrophysiology and synapse formation. Brain Res. 149:279–293.

    Google Scholar 

  28. Pfenning, M. A., and Richelson, E. 1990. Methods for studying receptors with cultured cells of nervous tissue origin. Pages 147–175,in Yamamura, H. I., Enna, S. J., and Kuhar, M. J. (eds), Methods in Neurotransmitter Receptor Analysis, Raven Press, New-York.

    Google Scholar 

  29. Kardos, J., and Kovacs, I. 1991. Binding interaction of gamma-aminobutyric acid A and B receptors in cell culture. NeuroReport 2:541–543.

    Google Scholar 

  30. Ellis, J., Huyler, J. H., Kemp, D. E., and Weiss, S. 1990. Muscarinic receptors and second-messenger responses of neurons in primary culture. Brain Res. 511:234–240.

    Google Scholar 

  31. Hertz, L., Bender, A. S., and Richardson, J. S. 1983. Benzodiazepine and β-adrenergic binding to primary cultures of astrocytes and neurons. Progr. Neuropsychopharmacol. Biol. Psychiat. 7: 681–686.

    Google Scholar 

  32. Vaysse, P. J. J., Zukin, R. S., Fields, K. L., and Kessler, J. A. 1990. Characterization of opioid receptors in cultured neurons. J. Neurochem. 55:624–631.

    Google Scholar 

  33. Ciaraldi, T. Robbins, R., Leidy, J. W., Thamm, P., and Berhanu, P. 1985. Insulin receptors on cultured hypothalamic cells; functional and structural differences from receptors on peripheral target cells. Endocrinology 116:2179–2185.

    Google Scholar 

  34. Kapcala, L. P., and De Souza, E. B. 1988. Characterization of corticotropin-releasing factor receptors in dissociated brain cultures. Brain Res. 456:159–167.

    Google Scholar 

  35. Di Scala-Guenot, D., Strosser, M. T., Freund-Mercier, M. J., and Richard, P. 1990. Characterization of oxytocin-binding sites in primary rat brain cell cultures. Brain Res. 524:10–16.

    Google Scholar 

  36. Sher, P. K. 1985. Characteristics of benzodiazepine receptor binding in living cultures of mouse cerebral cortex at physiological temperature. Dev. Brain Res. 21:133–136.

    Google Scholar 

  37. Savattieri, G., Guarneri, R., Salemi, G., La Bella, V., Ferraro, D., Scondotto, S., and Piccoli, F. 1990. Binding of flunitrazepam to differentiating neurons cultured in a chemically defined, hormonesupplemented medium. Neurochem. Res. 15:773–776.

    Google Scholar 

  38. Franklin, C. L., and Gruol, D. L. 1991. Developmental expression of excitatory amino acid responses in cerebellar Purkinje neurons in culture. Brain Res. 543:219–226.

    Google Scholar 

  39. Ozawa, S., Iino, M., and Tsuzuki, K. 1991. Two types of kainate response in cultured rat hippocampal neurons. J. Neurophysiol. 66:2–11.

    Google Scholar 

  40. Brorson, J. R., Manzolillo, P. A., and Miller, J. 1994. Ca2+ entry via AMPA/KA receptors and excitotoxicity in cultured cerebellar Purkinje cells. J. Neurosci. 14:187–197.

    Google Scholar 

  41. Köller, H., Siebler, M., Schmalenbach, C., and Müller, H. W. 1990. GABA and glutamate receptor development of cultured neurons from rat hippocampus, septal region, and neocortex. Synapse 5:59–64.

    Google Scholar 

  42. Mattson, M. P., Wang, H., and Michaelis, E. K. 1991. Developmental expression, compartmentalization, and possible role in excitotoxicity of a putative NMDA receptor protein in cultured hippocampal neurons. Brain Res. 565:94–108.

    Google Scholar 

  43. Drejer, J., Larsson, O. M., and Schousboe, A. 1982. Characterization ofl-glutamate uptake into and release from astrocytes and neurons cultured from different brain regions. Exp. Brain Res. 47: 259–269.

    Google Scholar 

  44. Forsythe, I. D., and Clements, J. D. 1990. Presynaptic glutamate receptors depress excitatory monosynaptic transmission between mouse hippocampal neurones. J. Physiol. (London) 429:1–16.

    Google Scholar 

  45. Teichberg, V. I. 1991. Glial glutamate receptors: likely actors in brain signaling. FASEB J. 5:3086–3091.

    Google Scholar 

  46. Bender, A. S., and Hertz, L. 1984. Flunitrazepam binding to intact and homogenized astrocytes and neurons in primary cultures. J. Neurochem. 43:1319–1327.

    Google Scholar 

  47. Jones, K. A., and Baughman, R. W. 1991. Both NMDA and non-NMDA subtypes of glutamate receptors are concentrated at synapses on cerebral cortical neurons in culture. Neuron 7:593–603.

    Google Scholar 

  48. Scatton, B. 1993. The NMDA receptor complex. Fundam. Clin. Pharmacol. 7:389–400.

    Google Scholar 

  49. Monaghan, D. T., Bridges, R. J., and Cotman, C. W. 1989. The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Ann. Rev. Pharmacol. toxicol. 29:365–402.

    Google Scholar 

  50. Murphy, S. N., and Miller, R. J. 1989. Regulation of Ca2+ influx into striatal neurons by kainic acid. J. Pharmacol. Exp. Ther. 249: 184–193.

    Google Scholar 

  51. Insel, T. R., Miller, L. P., and Gelhard, R. E. 1990. The ontogeny of excitatory amino acid receptors in rat forebrain. I. N-methyl-D-aspartate and quisqualate receptors. Neuroscience 35:31–43.

    Google Scholar 

  52. Petralia, R. S. and Wenthold R. J. 1992. Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain. J. Comp. Neurol. 318:329–354.

    Google Scholar 

  53. Nicoletti, F., Iadarola, M. J., Wroblewski, J. T., and Costa, E. 1986. Excitatory amino acid recognition sites coupled with inositol phospholipid metabolism: developmental changes and interaction with alpha-1-adrenoreceptors. Proc. Natl. Acad. Sci. USA. 83:1931–1935.

    Google Scholar 

  54. Dudek, S. M., and Bear, M. F. 1989. A biochemical correlate of the critical period for synaptic modification in the visual cortex. Science 246:673–675.

    Google Scholar 

  55. Izumi, Y., Clifford, D. B., and Zorumski, C. F. 1991. 2-amino-3-phosphonopropionate blocks the induction and maintenance of long-term potentiation in rat hippocampal slices. Neurosci. Lett. 122:187–190.

    Google Scholar 

  56. Stanton, P. K., Chattarji, S., and Sejnowski T. J. 1991. 2-amino-3-phosphonopropionic acid, an inhibitor of glutamate-stimulated phosphoinositide turnover, blocks induction of homo-synaptic long-term depression, but not potentiation in rat hippocampus. Neurosci. Lett. 127:61–66.

    Google Scholar 

  57. Lipton, S. A., and Kater, S. B. 1989. Neurotransmitter regulation of neuronal outgrowth, plasticity and survival. Trends Neurosci. 7:265–270.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oillet, J., Nicolas, F., Koziel, V. et al. Analysis of glutamate receptors in primary cultured neurons from fetal rat forebrain. Neurochem Res 20, 761–768 (1995). https://doi.org/10.1007/BF01705546

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01705546

Key Words

Navigation