Skip to main content
Log in

Evaluation of myocardial function and perfusion in ischemic heart disease

  • Invited Papers
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Ischemic heart disease is the most frequently encountered cardiac disease. Magnetic resonance imaging (MRI) can be used to investigate several facets of this disease. A number of studies over the past several years have shown the capability of cine MRI for quantifying regional myocardial function and for identifying abnormalities of regional myocardial wall thickening in the basal or vasodilated states due to ischemia. Contrast-enhanced inversion recovery fast gradient echo and echo-planar imaging have been applied for monitoring the first passage of contrast media through the myocardium. This technique has depicted regional perfusion deficits in the basal state or in the vasodilated states induced by vasodilators. Recent studies have also disclosed the feasibility of using MR techniques for displaying the morphology of the major coronary arteries and for measuring blood flow velocity in the coronary arteries and coronary bypass grafts. Thus, MRI has the capability for evaluation of morphology and flow in the coronary arteries and for assessment of function and perfusion of the myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sechtem U, Sommerhoff BA, Markiewicz W, White RD, Cheitlin MD, Higgins CB (1987) Regional left ventricular wall thickening by MRI: evaluation in normal subjects and patients with global and regional dysfunction.Am J Cardiol 59 145–151.

    PubMed  Google Scholar 

  2. Fisher MR, von Schulthess GK, Higgins CB (1985) Multi-phasic cardiac magnetic resonance imaging: normal left ventricular wall thickening.Am J Radiol 145 27–40.

    Google Scholar 

  3. Pflugfelder PW, Sechtem UP, White RD, Higgins CB (1988) Quantification of regional myocardial function by rapid (cine, magnetic resonance imaging.Am J Radiol 150 523–530.

    Google Scholar 

  4. Semelka RC, Tomei E, Wagner S, Mayo MD et al (1990) Interstudy reproducibility of dimensional and functional measurements between cine magnetic resonance studies in the morphological abnormal left ventricle.Am Heart J 119 1367–1373.

    PubMed  Google Scholar 

  5. Peschock RM, Rokey R, Malloy GM, McNamee P et al. (1989) Assessment of myocardial systolic wall thickening using nuclear magnetic resonance imaging.J Am Coll Cardiol 14 653–659.

    PubMed  Google Scholar 

  6. McDonald KM, Parrish T, Wennberg P et al. (1992) Rapid accurate and simultaneous noninvasive assessment of right and left ventricular mass with nuclear magnetic resonance imaging using the snapshot gradient method.J Am Coll Cardiol 19 1601–1607.

    PubMed  Google Scholar 

  7. Underwood S, Rees RSO, Savage PE et al. (1986) Assessment of regional left ventricular function by magnetic resonance.Br Heart J 56 334–339.

    PubMed  Google Scholar 

  8. Baer FM, Smolarz K, Jungehuelsing M, Beckwilm J, Theissen P et al. (1992) Chronic myocardial infarction: assessment of morphology, function and perfusion by gradient-echo magnetic resonance imaging and99mTcmethoxyisbutyl-isonitrile-SPECT.Am Heart J 123 636–645.

    PubMed  Google Scholar 

  9. Sechtem U, Voth E, Schneider C, Theissen P, et al. (1993) Assessment of residual viability in patients with myocardial infarction using magnetic resonance imaging.Int J Cardiac Imaging 9 931–40.

    Google Scholar 

  10. Perrone-Filardi P, Bacharach S, Dilsizisan B, Maurea S, Frank JA, Bonow RO (1992) Regional left ventricular thickening. Relation to regional uptake of18F-fluordeoxyglucose and201TI in patients with chronic coronary artery disease and left ventricular dysfunction.Circulation 86 1125–1137.

    PubMed  Google Scholar 

  11. Perrone-Filardi P, Bacharach S, Dilsizian V, Maurea S, Marin-Neto JA et al. (1992) Metabolic evidence of viable myocardium in regions with reduced wall thickness and absent wall thickening in patients with chronic ischemic left ventricular dysfunction.J Am Coll Cardiol 20 161–168.

    PubMed  Google Scholar 

  12. Zerhouni EA, Parish DM, Rogers WJ et al. (1988) Human heart: tagging with MR imaging—a method for noninva-sive assessment of myocardial motion.Radiology 169 59–63.

    PubMed  Google Scholar 

  13. Clark NR, Reichek N, Bergey P, Hoffman EA et al (1991) Circumferential myocardial shortening in the abnormal human left ventricle. Assessment by magnetic resonance imaging using spatial modulation of magnetization.Circulation 84 67–74.

    PubMed  Google Scholar 

  14. Kramer CM, Lima JA, Reichek N, Ferrari VA et al. (1993) Regional differences in function within noninfarcted myocardium during left ventricular remodeling.Circulation 88 1279–1288.

    PubMed  Google Scholar 

  15. Wagner S, Auffermann W, Buser P, Semelka RC, Higgins CB (1991) Functional description of the left ventricle in patients with volume overload, pressure overload, and myocardial disease using cine magnetic resonance imaging.Am J Cardiac Imaging 5 87–97.

    Google Scholar 

  16. Shapiro EP, Rogers WJ, Beyar R, Soulen RL et al. (1989) Determination of left ventricular mass by magnetic resonance imaging in hearts deformed by acute infarction.Circulation 79 706–711.

    PubMed  Google Scholar 

  17. Pennell DJ, Underwood SR, Longmore DB (1990) Detection of coronary artery disease using MR imaging with dipyridamole.J Comput Assist Tomogr 14 2167–2170.

    Google Scholar 

  18. Baer FM, Smolarz K, Jungehulsing M et al. (1992) Feasibility of high-dose dipyridamole-magnetic resonance imaging for the detection of coronary artery disease and comparison with coronary angiography.Am J Cardiol 69 51–56.

    PubMed  Google Scholar 

  19. Baer FM, Smolarz K, Theissen P, Voth E, Schichta H, Sechtem U (1993) Identification of hemodynamically significant coronary artery stenoses by dipyridamole-magnetic resonance imaging and99m Tc-methoxyisobu-tyl-isonitrile-SPECT.Int J Card Imag 9 133–145.

    Google Scholar 

  20. Pennell DJ, Underwood SR, Manzara CC, Swanton RH, Walker JM, Ell PJ, Longmore DB (1992) Magnetic resonance imaging during dobutamine stress in coronary artery disease.Am J Cardiol 70 34–40.

    PubMed  Google Scholar 

  21. Baer FM, Voth P, Theissen P, Schichta H, Sechtem U (1993) Dobutamine-MRI in comparison to simultaneously assess99mTc-MIBI-SPECT for the localization of hemodynamically significant artery stenoses (Abstract). InBook of Abstracts: Society of Magnetic Resonance in Medicine 1993. p. 224. Berkeley, CA: Society of Magnetic Resonance in Medicine.

    Google Scholar 

  22. van Rugge FP, van der Wall EE, de Roos A, Bruschke AV (1993) Dobutamine stress magnetic resonance imaging for detection of coronary artery disease.J Am Coll Cardiol 22 431–439.

    PubMed  Google Scholar 

  23. Atkinson JA, Burstein D, Edelman RR (1990) First pass cardiac perfusion: evaluation with ultrafast MR imaging.Radiology 174 757–762.

    PubMed  Google Scholar 

  24. Saeed M, Wendland MF, Sakuma H, Chew W. Laurerma K et al. (1993) Detection of myocardial ischemia using first pass contrast-enhanced inversion recovery and driven equilibrium fast GRE imaging. (Abstract). In:Book of Abstracts: Society of Magnetic Resonance in Medicine, 1993. p. 536. Berkeley, CA: Society of Magnetic Resonance in Medicine.

    Google Scholar 

  25. Miller DD, Holmvang G, Gill JB et al. (1989) MRI detection of myocardial perfusion changes by gadolin-ium-DTPA infusion during dipyridamole hyperemia.Magn Reson Med 10 246–255.

    PubMed  Google Scholar 

  26. Schaefer S, Lange R, Gutekunst D, Parkley RW, Wilier-son JT, Peshock RM (1991) Contrast-enhanced magnetic resonance imaging of hypoperfused myocardium.Invest Radial 26 551–556.

    Google Scholar 

  27. Schmiedl U, Ogan MD, Paajanen H et al. (1987) Albumin labeled with Gd-DTPA as an intravascular, blood-pool enhancing agent for MR imaging: biodistribution and imaging studies.Radiology 162 205–210.

    PubMed  Google Scholar 

  28. Wilke N, Engels G, Koroneos A, Feistel H et al. (1992) First pass myocardial perfusion imaging with ultrafast gadolinium-enhanced MR imaging at rest and during dipyridamole administration. (Abstract).Radiology 185 33.

    Google Scholar 

  29. Wendland MF, Saeed M, Masui T, Derugin N, Moseley ME, Higgins CB (1993) Echoplanar MR imaging of normal and ischemic myocardium with gadodiamide injection.Radiology 186 535–542.

    PubMed  Google Scholar 

  30. Manning WJ, Atkinson DJ, Grossman W, Paulin S, Edelman RR (1991) First-pass nuclear magnetic resonance imaging studies using gadolinium-DTPA in patients with coronary artery disease.0 Am Coll Cardiol 18 959–965.

    Google Scholar 

  31. Schaefer S, Van Tyen R, Saloner D (1992) Evaluation of myocardial perfusion abnormalities with gadolinium-enhanced snapshot MR imaging in humans.Radiology 185 795–801.

    PubMed  Google Scholar 

  32. van Rugge FP, Boreel JJ, van der Waal EE et al. (1991) Cardiac first pass and myocardial perfusion in normal subjects assessed by subsecond Gd-DTPA enhanced MR imaging.J Comput Assist Tomogr 15 989–995.

    PubMed  Google Scholar 

  33. Wilke N, Simm C, Zhang J, Ellermann J et al. (1993) Contrast enhanced first pass myocardial perfusion imag-ing: correlation between myocardial blood flow in dogs at rest and during hyperemia.Magn Reson Med 29 485–497.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higgins, C.B., Saeed, M., Wendland, M. et al. Evaluation of myocardial function and perfusion in ischemic heart disease. MAGMA 2, 177–184 (1994). https://doi.org/10.1007/BF01705238

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01705238

Keywords

Navigation