Skip to main content
Log in

Conservation of amino-acid sequence motifs in lentivirus Vif proteins

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The nonstructural/regulatory genes of human immunodeficiency virus type 1 (HIV-1) and other lentiviruses are believed to play an important role in the replication and pathogenesis of these viruses. In HIV-1 and other lentiviruses, thevif (viral infectivity factor) open reading frame (ORF) (also termedsor orQ in some lentivirus genomes) is located in the central region, overlapping the 3′ end of thepol ORF, but in a different reading frame. Among the lentiviruses, only equine infectious anemia virus lacks avif ORF. The predicted Vif protein sequences from 38 lentiviruses were analyzed for the presence of global and local sequence similarity. The Vif proteins of closely related lentiviruses are highly conserved (HIV-1HXB2:HIV-1mn=91% identity), while those of more distantly related lentirviruses have diverged significantly (HIV-1HXB2: simian immunodeficiency virusmac=30% identity). A search for local sequence similarity revealed that a unifying feature of predicted lentivirus Vif proteins is the presence of at least one of two short, highly conserved sequence motifs, SL(I/V)X4YX9Y and SLQXLA. SLQXLA was present in 34 of 38 lentiviruses examined, while the remaining four lentiviruses had one (three viruses) or two (one virus) substitutions in this motif (of five total substitutions, three were conservative changes). The SL(I/V)X4YX9Y motif was found only in primate lentiviruses and in bovine immunodeficiency-like virus. Based on these findings, we suggest that the locus designationvif be used to denote all lentivirus ORFs previously calledvif, Q, orsor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haseltine, W.A., J Acq Imm Defic Syndr1 217–240, 1988.

    Google Scholar 

  2. Cullen, B.R. and Greene, W.C., Virology178 1–5, 1990.

    Google Scholar 

  3. Kieny, M.P., J Acq Imm Defic Syndr3 395–402, 1990.

    Google Scholar 

  4. Ratner, L., Fisher, A., Jagodzinski, L.L., Mitsuya, H., Liou, R.-S., Gallo, R.C., and Wong-Staal, F., AIDS Res Human Retrovir3 57–69, 1987.

    Google Scholar 

  5. Guyader, M., Emerman, M., Sonigo, P., Clavel, F., Montagnier, L., and Alizon, M., Nature (London)326 662–669, 1987.

    Google Scholar 

  6. Chakrabarti, L., Guyader, M., Alizon, M., Daniel, M.D., Desrosiers, R.C., Tiollais, P., and Sonigo, P., Nature (London)328 543–547, 1987.

    Google Scholar 

  7. Fukasawa, M., Miura, T., Hasegawa, A., Morikawa, S., Tsujimoto, H., Miki, K., Kitamura, T., and Hayami, M., Nature (London)333 457–461, 1988.

    Google Scholar 

  8. Garvey, K.J., Oberste, M.S., Elser, J.E., Braun, M.J., and Gonda, M.A., Virology175 391–409, 1990.

    Google Scholar 

  9. Olmsted, R.A., Hirsch, V.M., Purcell, R.H., and Johnson, P.R., Proc Natl Acad Sci USA86 8088–8092, 1989.

    Google Scholar 

  10. Sonigo, P., Alizon, M., Staskus, K., Klatzmann, D., Cole, S., Danos, O., Retzel, E., Tiollais, P., Haase, A., and Wain-Hobson, S., Cell42 369–382, 1985.

    Google Scholar 

  11. Braun, M.J., Clements, J.E., and Gonda, M.A., J Virol61 4046–4054, 1987.

    Google Scholar 

  12. Kawakami, T., Sherman, L., Dahlberg, J., Gazit, A., Yaniv, A., Tronick, S.R., and Aaronson, S.A., Virology158 300–312, 1987.

    Google Scholar 

  13. Fisher, A.G., Ensoli, B., Ivanoff, L., Chamberlain, M., Petteway, S., Ratner, L., Gallo, R.C., and Wong-Staal, F., Science237 888–893, 1987.

    Google Scholar 

  14. Guy, B., Geist, M., Dott, K., Spehner, D., Kieney, M.-P., and Lecocq, J.-P., J Virol65 1325–1331, 1991.

    Google Scholar 

  15. Sobel, E. and Martinez, H.M., Nucleic Acids Res14 363–374, 1986.

    Google Scholar 

  16. Devereux, J., Haeberli, P., and Smithies, O., Nucleic Acids Res12 387–395, 1984.

    Google Scholar 

  17. Gribskov, M. and Burgess, R.R., Nucleic Acids Res14 6745–6763, 1986.

    Google Scholar 

  18. Jameson, B.A. and Wolf, H., CABIOS4 181–186, 1988.

    Google Scholar 

  19. Takkinen, K., Nucleic Acids Res14 5667–5682, 1986.

    Google Scholar 

  20. Gonda, M.A., Braun, M.J., Carter, S.G., Kost, T.A., Bess, J.W. Jr., Arthur, L.O., and Van Der Maaten, M.J., Nature (London)330, 388–391, 1987.

    Google Scholar 

  21. Davis, J.L. and Clements, J.E., Proc Natl Acad Sci USA86 414–418, 1989.

    Google Scholar 

  22. Gourdou, I., Mazarin, V., Quérat, G., Sauze, N., and Vigne, R., Virology171 170–178, 1989.

    Google Scholar 

  23. Dorn, P., DaSilva, L., Martarano, L., and Derse, D., J Virol64 1616–1624, 1990.

    Google Scholar 

  24. Noiman, S., Gazit, A., Tori, O., Sherman, L., Miki, T., Tronick, S.R., and Yaniv, A., Virology176 280–288, 1990.

    Google Scholar 

  25. Mazarin, V., Gourdou, I., Quérat, G., Sauze, N., Audoly, G., Vitu, C., Russo, P., Rousselot, C., Filippi, P., and Vigne, R., Virology178 305–310, 1990.

    Google Scholar 

  26. Tiley, L.S., Brown, P.H., Le, S.-Y., Maizel, J.V., Clements, J.E., and Cullen, B.R., Proc Natl Acad Sci USA87 7497–7501, 1990.

    Google Scholar 

  27. Strebel, K., Daugherty, D., Clouse, K., Cohen, D., Folks, T., and Martin, M.A., Nature (London)328 728–730, 1987.

    Google Scholar 

  28. Gallo, R., Wong-Staal, F., Montagnier, L., Haseltine, W.A., and Yoshida, M., Nature (London)333 504, 1988.

    Google Scholar 

  29. Laurence, J., AIDS Res Human Retrovir4 vii-viii, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oberste, M.S., Gonda, M.A. Conservation of amino-acid sequence motifs in lentivirus Vif proteins. Virus Genes 6, 95–102 (1992). https://doi.org/10.1007/BF01703760

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01703760

Key words

Navigation