Skip to main content
Log in

Influence of codon usage and translation initiation codon context in theAcNPV-based expression system: Computer analysis using homologous and heterologous genes

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Codon usage by all the known gene sequences fromAutographa californica nuclear polyhedrosis virus (AcNPV) was compared with that of firefly luciferase (luc) and the beta subunit of human chorionic gonadotropin (βhCG) expressed to contrasting levels in the baculovirus system. The highly expressedluc gene showed a codon usage similar toAcNPV genes, as reflected by a very low D-squared statistic value (0.78) and a similar G/C usage (45%) at wobble positions. However, the underexpressed βhCG gene displayed a high D-squared value (7.3) and G/C usage (82.5%) at the wobble base positions. Alignment of the 20 nucleotides around the initiation codon of 23AcNPV genes identified a novel consensus translation initiation sequence aag/ta/tat/aa/cAAaATGaa/ct/ag/aAan, which was quite different from the Kozak consensus sequence (GCC)GCCA/GCCATGG. An extension of these analyses to a sample of other heterologous genes overexpressed and underexpressed in BEVS suggested similar trends. These theoretical analyses have important implications for heterologous gene expression in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wada K.N., Wada Y., Ishibashi F., Cojobori T., and Ikemura T., Nucleic Acids Res20 2111–2118, 1992.

    Google Scholar 

  2. Bennetzen J.L. and Hall B.D., J Biol Chem257 3026–3031, 1982.

    Google Scholar 

  3. Ikemura T., J Mol Biol158 573–597, 1982.

    Google Scholar 

  4. Shields D.C., J Mol Evol31 71–80, 1990.

    Google Scholar 

  5. Kotula L. and Curtis P.J., Biotechnology9 1386–1389, 1991.

    Google Scholar 

  6. Kozak M., Cell44 283–292, 1986.

    Google Scholar 

  7. Cavener D.R. and Ray S.C., Nucleic Acids Res19 3185–3192, 1991.

    Google Scholar 

  8. Cigan A.M. and Donahue T.F., Gene59 1–18, 1987.

    Google Scholar 

  9. Kozak M., Nucleic Acids Res15 8125–8148, 1987.

    Google Scholar 

  10. O'Reilly D.R., Miller L.K., and Luckow V.A. (eds),Baculovirus Expression Vectors—A Laboratory Manual. W.H. Freeman and Company, New York, 1992.

    Google Scholar 

  11. Nakhai B., Sridhar P., Pal R., Talwar G.P., and Hasnain S.E., Ind J Biochem Biophys29 315–321, 1992.

    Google Scholar 

  12. Hasnain S.E. and Nakhai B., Gene91 135–138, 1990.

    Google Scholar 

  13. Jha P.K., Nakhai B., Sridhar P., Talwar G.P., and Hasnain S.E., FEBS Lett274 23–26, 1990.

    Google Scholar 

  14. Hasnain S.E., Nakhai B., Ehtesham N.Z., Sridhar P., Ranjan A., Talwar G.P., and Jha P.K., DNA Cell Biol13 275–282, 1994.

    Google Scholar 

  15. Jha P.K., Pal R., Nakhai B., Sridhar P., and Hasnain S.E., FEBS Lett310 148–152, 1992.

    Google Scholar 

  16. Nakhai B., Pal R., Sridhar P., Talwar G.P., and Hasnain S.E., FEBS Lett283 104–108, 1991.

    Google Scholar 

  17. Watson C.J. and Hay R.T., Nucleic Acids Res18 1167–1173, 1990.

    Google Scholar 

  18. Deubel V., Bordier M., Megret F., Gentry M.K., Schlesinger J.J., and Girard M., Virology180 442–447, 1991.

    Google Scholar 

  19. St. Angelo C., Smith G.E., Summers M.D., and Krug R.M., J Virol61 351–365, 1987.

    Google Scholar 

  20. Gunne H., Hellers M., and Steiner H., Eur J Biochem187 699–703, 1990.

    Google Scholar 

  21. Schmaljohn C.S., Parker M.D., Ennis W.H., Dalrymple J.M., Collet M.S., Suzich J.A., and Schmaljohn A.L., Virology170 184–192, 1989.

    Google Scholar 

  22. Prehaud C., Takehara K., Flamand A., and Bishop D.H.L., Virology173 390–399, 1989.

    Google Scholar 

  23. Landford R.E., Luckow V., Kennedy R.C., Dreesman G.R., Notvall L., and Summers M.D., J Virol63 1549–1557, 1989.

    Google Scholar 

  24. Bailey M.J., McLeod D.A., Kang C.Y., and Bishop D.H.L., Virology169 322–331, 1989.

    Google Scholar 

  25. Devereaux J., Haeberli P., and Smithies O., Nucleic Acids Res12 387–395, 1984.

    Google Scholar 

  26. Grantham R., Goutier C., Gouy M., Jacobzone M., and Mercier R., Nucleic Acids Res9 243–274, 1981.

    Google Scholar 

  27. Sharp P.M. and Li W.H., J Mol Evol24 28–38, 1986.

    Google Scholar 

  28. Soerensen M.A., Kurland C.G., and Pedersen S., J Mol Biol207 365–377, 1989.

    Google Scholar 

  29. Kurland C.G., FEBS Lett285 165–169, 1991.

    Google Scholar 

  30. Blumer M., Nature325 728–730, 1987.

    Google Scholar 

  31. Luckow V.A. and Summers M.D., Virology167 56–71, 1988.

    Google Scholar 

  32. Kozak M., J Biol Chem266 19867–19870, 1991.

    Google Scholar 

  33. Looman C.A. and Kuivenhoven J.A., Nucleic Acids Res21 4268–4271, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranjan, A., Hasnain, S.E. Influence of codon usage and translation initiation codon context in theAcNPV-based expression system: Computer analysis using homologous and heterologous genes. Virus Genes 9, 149–153 (1995). https://doi.org/10.1007/BF01702657

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01702657

Key words

Navigation