Skip to main content
Log in

Comparative sequence analysis of the coat proteins of biologically distinct citrus tristeza closterovirus isolates

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The genome of citrus tristeza closterovirus (CTV) consists of a 20 kb single-stranded RNA encapsidated in a 2000 nm long, flexuous particle. Double-stranded (replicative form) RNAs purified from CTV-infected tissue were used to prepare complementary DNA libraries that involved initial first-strand cDNA synthesis followed by selective amplification of the coat protein gene. CTV-specific antisera were used to select clones expressing the coat protein. The coat protein genes of seven Florida and four exotic isolates that differ in their biological properties were cloned and sequenced. The gene is 669 base pairs long and encodes a 223 amino acid protein. There was a greater than 80% homology at both nucleotide and amino acid levels among all the isolates examined. However, comparisons showed that each isolate was found to have several unique amino acid residues. Several blocks of amino acid residues were conserved among all the isolates. A cluster dendrogram showed greater similarities among groups of mild and severe Florida isolates that differed significantly from those of the geographically distinct, exotic CTV isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bar-Joseph M. and Lee, R.F., Commonwealth Mycological Institute/Association of Applied Biologists: Description of Plant Viruses. No. 353, 1990.

  2. Bar-Joseph M., Garnsey S.M., and Gonsalves D., Adv Virus Res25 93–168, 1979.

    Google Scholar 

  3. Bar-Joseph M., Marcus R., and Lee R.F., Annu Rev Phytopathol27 292–316, 1989.

    Google Scholar 

  4. Dodds J.A., Jordan R.L., Roistacher C.N., and Jarupat T., Intervirology27 177–188, 1987.

    Google Scholar 

  5. Valverde R.A., Dodds J.A., and Heick J.A., Phytopathology76 459–465, 1986.

    Google Scholar 

  6. Lee R.F., Proc Fla State Hort Soc97 53–56, 1984.

    Google Scholar 

  7. Yokomi R.K. and Garnsey S.M., Phytophylactica19 169–172, 1987.

    Google Scholar 

  8. Lee R.F., Brlansky R.H., Garnsey S.M., and Yokomi R.K., Phytophylactica19 215–218, 1987.

    Google Scholar 

  9. Broadbent P., Bevington K.B., and Coot B.G., Proc. 11 Conf. Intl. Organ. Citrus Virol., Riverside, CA, 1991, pp. 64–70.

  10. Beachy R.N., Loesch-Fries S., and Tumer N.E., Annu Rev Phytopathol28 451–474, 1990.

    Google Scholar 

  11. Dulieu P. and Bar-Joseph M., J Gen Virol71 443–447, 1990.

    Google Scholar 

  12. Niblett C.L., Stark D.M., Lee R.F., and Beachy R.N., Phytopathology81 698, 1991.

    Google Scholar 

  13. Sekiya M.E., Lawrence S.D., McCaffery M., and Cline K., J Gen Virol72 1013–1020, 1991.

    Google Scholar 

  14. Pappu H.R., Lee R.F., Pappu S.S., Niblett C.L., and Karkashian J., Proc. Australian Plant Pathol. Soc., p. 23, 1991.

  15. Rosner A., Lee R.F., and Bar-Joseph M., Phytopathology76 820–824, 1986.

    Google Scholar 

  16. Yokomi R.K., Garnsey S.M., Permar T.A., Lee R.F., and Youtsey C.O. in Proc. 11 Conf. Int. Organ. Citrus Virologists, Riverside, CA, pp. 86–92, 1991.

  17. Rocha-Pena M.A., Lee R.F., Permar T.A., Yokomi R.K., and Garnsey S.M. in Proc. 11 Conf. Intl. Organ. Citrus Virologists, Riverside, CA, pp. 93–102, 1991.

  18. Van Vuuren S.P. and Moll J.N., Phytophylactica19 219–221, 1987.

    Google Scholar 

  19. Ballester-Olmos J.F., Pina J.A., and Navarro L. in Proc. 10 Conf. Intl. Organ. Citrus Virologists, Riverside, CA, pp. 28–32, 1988.

  20. Kano T., Garnsey S.M., Koizumi M., and Permar T.A. in Proc. 11 Conf. Intl. Organ. Citrus Virologists, Riverside, CA, pp. 51–55, 1991.

  21. Morris T.J. and Dodds J.A., Phytopathology69 854–858, 1979.

    Google Scholar 

  22. Sambrook J., Fritsch E.F., and Maniatis T.,Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Press, Cold Spring Harbor, NY, 1989.

    Google Scholar 

  23. Vieira J. and Messing J., Meth Enzymol153 3–11, 1989.

    Google Scholar 

  24. Still P.E., Hunter T.J., Rocha-Pena M.A., Lee R.F., and Niblett C.L., Phytopathology81 695, 1991.

    Google Scholar 

  25. Devereux J., Haeberli P., and Smithies O., Nucleic Acids Res12 387–395, 1984.

    Google Scholar 

  26. Rhoads D.D. and Roufa D.S., Mol Cell Biol5 1655–1659, 1985.

    Google Scholar 

  27. Garnsey S.M., Gumpf D.J., Roistacher C.N., Civerolo E.L., Lee R.F., Yokomi R.K., and Bar-Joseph M., Phytophylactica19 151–157, 1987.

    Google Scholar 

  28. Permar T.A., Garnsey S.M., Gumpf D.J., and Lee R.F., Phytopathology80 224–228, 1990.

    Google Scholar 

  29. Garnsey S.M., Kano T., Permar T.A., Cambra M., Koizumi M., and Vela C., Phytopathology79 1174, 1989.

    Google Scholar 

  30. Dawson W.O., Virology186 359–367, 1992.

    Google Scholar 

  31. Garnsey S.M., Civerolo E.L., Gumpf D.J., Yokomi R.K., and Lee R.F. in Proc. 11th Intl. Org. Citrus Virol., Riverside, CA, 1991, pp. 113–120.

  32. Needleman S.B. and Wunsch C.D., J Mol Biol48 443–453, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanu Pappu.

Additional information

Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the USDA, and does not imply its approval to the exclusion of the products that may also be suitable.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pappu, H., Pappu, S., Niblett, C. et al. Comparative sequence analysis of the coat proteins of biologically distinct citrus tristeza closterovirus isolates. Virus Genes 7, 255–264 (1993). https://doi.org/10.1007/BF01702586

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01702586

Key words

Navigation