Skip to main content
Log in

Overall signal sequence hydrophobicity determines the in vivo translocation efficiency of a herpesvirus glycoprotein

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

We have described three mutant strains of Pseudorabies virus that contain mutations in the signal sequence coding region of a nonessential envelope glycoprotein, gIII. The alterations disrupt, truncate, or eliminate the hydrophobic core domain of the signal sequence. Each mutant was assayed for its ability to promote the translocation of gIII across the endoplasmic reticulum membrane and the subsequent localization of the mature form of the glycoprotein to the infected cell surface or the virus envelope. Our results confirm and extend findings in other systems that the overall hydrophobicity of the signal sequence core region is a major determinant of translocation efficiency. We were unable to correlate simply the length of the core or the average hydrophobicity of core residues with export efficiency. Because our work involved the use of infectious virus mutants, we were able to identify a virus defect associated with a complete block in gIII export. This defect will facilitate a pseudoreversion analysis of gIII signal sequence function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gierasch L.M., Biochemistry28 923–930, 1989.

    Google Scholar 

  2. Walter P. and Lingappa V.R., Annu Rev Cell Biol2 499–516, 1986.

    Google Scholar 

  3. von Heijne G., J Mol Biol184 99–105, 1985.

    Google Scholar 

  4. Bankiatis V.A., Ryan J.P., Rasmussen B.A., and Bassford P.J., Jr., Curr Top Membr Transp54 105–150, 1985.

    Google Scholar 

  5. Bird P., Gething M.-J., and Sambrook J., J Biol Chem.265 8420–8425, 1990.

    Google Scholar 

  6. Ryan J.P., Duncan M.C., Bankaitis V.A., and Bassford P.J., Jr., J Biol Chem261 3389–3395, 1986.

    Google Scholar 

  7. Hampl H., Ben-Porat T., Ehrlicher L., Habermehl K.O., and Kaplan A.S., J Virol52 583–590, 1984.

    Google Scholar 

  8. Enquist L.W., Keeler C.L., Jr., Robbins A.K., Ryan J.P., and Whealy M.E., J Virol62 3565–3573, 1988.

    Google Scholar 

  9. Robbins A.K., Watson R.J., Whealy M.E., Hays W.W., and Enquist L.W., J Virol58 339–347, 1986.

    Google Scholar 

  10. Robbins A.K., Whealy M.E., Watson R.J., and Enquist L.W., J Virol59 635–645, 1986.

    Google Scholar 

  11. von Heijne, G., Nucleic Acids Res14 4683–4690, 1986.

    Google Scholar 

  12. Preuss D. and Botstein D., Mol Cell Biol9 1452–1464, 1989.

    Google Scholar 

  13. Russel M., Kidd S., and Kelley M.R., Gene45 333–338, 1986.

    Google Scholar 

  14. Zoller M.J. and Smith M., Methods Enzymol100 468–500, 1983.

    Google Scholar 

  15. Sanger F., Nicklen S., and Coulson A.R., Proc Natl Acad Sci USA74 5463–5467, 1977.

    Google Scholar 

  16. Graham F.L. and van der Eb A.J., Virology52 456–467, 1973.

    Google Scholar 

  17. Holland T.C., Sandri-Goldin R.M., Holland L.E., Marlin S.D., Levine M., and Glorioso J.C., J Virol46 649–652, 1983.

    Google Scholar 

  18. Ryan J.P., Whealy M.E., Robbins A.K., and Enquist L.W., J Virol61 2962–2972, 1987.

    Google Scholar 

  19. Highlander S.L., Dorney D.J., Gage P.J., Holland T.C., Cai W., Person S., Levine M., and Glorioso J.C., J Virol63 730–738, 1989.

    Google Scholar 

  20. Bedouelle H. and Hofnung M, in Oxender D. (ed).Membrane Transport and Neuroreceptors. Alan R. Liss, Inc., New York, 1981, pp. 399–403.

    Google Scholar 

  21. Chou, P.Y. and Fasman G.D., Adv Enzymol47 45–147, 1978.

    Google Scholar 

  22. Tarentino A.L. and Maley F., J Biol Chem249 811–817, 1974.

    Google Scholar 

  23. Elder J.H. and Alexander S., Proc Natl Acad Sci USA79 4540–4544, 1982.

    Google Scholar 

  24. Mettenleiter T.C., Virology171 623–625, 1989.

    Google Scholar 

  25. Schreurs C., Mettenleiter T.C., Zuckermann F., Sugg N., and Ben-Porat T.J., Virology62 2251–2257, 1988.

    Google Scholar 

  26. Zuckermann F., Zsak L., Reilly L., Sugg N., and Ben-Porat T., J Virol63 3323–3329, 1989.

    Google Scholar 

  27. Mettenleiter T.C., Zsak L., Zuckermann F., Sugg N., Kern H., and Ben-Porat T., J Virol64 278–286, 1990.

    Google Scholar 

  28. Hopp T.P. and Woods K.R., Proc Natl Acad Sci USA78 3824–3828, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers M77771, M77772, and M77773.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryan, P., Robbins, A., Whealy, M. et al. Overall signal sequence hydrophobicity determines the in vivo translocation efficiency of a herpesvirus glycoprotein. Virus Genes 7, 5–21 (1993). https://doi.org/10.1007/BF01702345

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01702345

Key words

Navigation