Skip to main content
Log in

Über die algebraischen Eigenschaften der Integrale von linearen Differentialgleichungen mit konstanten Koeffizienten

  • Published:
Monatshefte für Mathematik und Physik Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Macaulay, The algebraic theory of modular systems, Cambridge Tracts in Mathematics, Bd. 19, Cambridge 1916, und Modern algebra and polynomial ideals, Proc. Cambr. Phil. Soc. XXX,1 (1934). Siehe auch Krull, Idealtheorie, Berlin 1935.

  2. Über das Macaulaysche inverse System und dessen Bedeutung für die Theorie der linearen Differentialgleichungen mit konstanten Koeffizienten, Abhandl. Math. Sem. d. Hansischen Univ.12 (1937), 127–132.

  3. Wir setzen a≠(0), ≠(1) voraus.

  4. Die Hilbertsche Funktion wird gewöhnlich nur für homogene Ideale erklärt und bezeichnet dann die Anzahl der modulo a linear unabhängigen Formen des Gradest. Die oben erklärte Hilbertsche Funktion für ein inhomogenes Ideal stimmt mit der Hilbertschen Funktion im gewöhnlichen Sinne für das “zugehörige” homogene Ideal überein. Da wir hier grundsätzlich inhomogene Ideale betrachten, werden wir an der obigen Erklärung auch im Falle eines homogenen Ideals festhalten. nämlich höchstens gleich der Anzahl der Potenzprodukte des Gradest+1; gilt das Gleichheitszeichen, so hat manH(a;t+1)=H(a;t)=H (a;T) fürTt; die Hilbertsche Funktion von a ist in diesem Falle konstant, d. h. a ist nulldimensional.

  5. Wir sind nicht in der Lage, die Konvergenz der Macaulayschen Reihe (9) für irgend einen endlichen Bereich der Variablenx 1 −1, ..., xm −1 behaupten zu können. Im Falle eines nulldimensionalen Ideals, wo die Reihen (9) nur in endlicher Anzahl auftreten, erhält man automatisch konvergente Reihen; bei höheren Dimensionen jedoch läßt das angegebene Verfahren zu ihrer Herleitung viel zu große Freiheit, sodaß man immer in der Lage ist, die Reihen (9) unbeschadet ihrer formalen Eigenschaften so zu bestimmen, daß sie nirgends konvergieren.

  6. Die angegebene Herleitung der Macaulayschen inversen Funktionen eignet sich wenig für praktische Zwecke. Wir werden aber in der Folge eine sehr einfache Methode zu ihrer wirklichen Herstellung entwickeln können.

  7. Denn dann folgen umgekehrt aus (13), bzw. (13a) fürl 1=...=lm=0 die Gleichungen (7a), von denen wir bereits gesehen haben, daß sie die Zugehörigkeit eines Polynoms zum Ideal a charakterisieren.

  8. Das Produkt ist wieder unter Beachtung der angegebenen Regel auszuführen, d. h. es sind alle Potenzprodukte wegzulassen, die mindestens einen positiven Exponenten aufweisen.

  9. Siehe Krull a. a. O., Idealtheorie, Berlin Seite 67.

  10. Der Ausdruck “Funktion” ist hier ebenso wie der Macaulaysche Ausdruck “inverse Funktion” zunächst nur in rein formalem Sinne zu verstehen. Wir meinen damit ganz allgemein eine Potenzreihe vom Typus (10a), ohne daß damit etwas über die Konvergenzeigenschaften dieser Reihe ausgesagt werden soll. Für den algebraischen Gesichtspunkt ist diese Frage von geringer Bedeutung, weil man mit divergenten Reihen formal genau so arbeitet wie mit konvergenten. Das Integralsystem eines Ideals enthält allerdings im allgemeinen (falls seine Dimension >0 ist) auch divergente Reihen, aber es enthält sicher auch alle möglichen konvergenten Reihen und damit alle im strengen Sinne der Analysis existierenden Integralfunktionen. Letztere müssen nämlich, da sie unbegrenzt oft differenzierbar sind, analytische Funktionen sein und also durch Potenzreihen vom Typus (10a) dargestellt werden können. Dabei sind komplexe Variable vorausgesetzt, weil nur dann die Begriffe unbegrenzt differenzierbar und analytisch zusammenfallen.

  11. Statt der negativen Potenzx −i hat manx i/i! einzusetzen.

  12. Gemeint ist natürlich die formale Übereinstimmung der bezüglichen Potenzreihenentwicklungen.

  13. Zum Beweise überlege man, daß man die Macaulaysche Konstruktion des inversen Systems auch umkehren, d. h. zu gegebenem inversen System das Jdeal konstruieren kann. Die bei dieser Konstruktion resultierenden Polynome bilden dann zufolge der vorausgesetzten Eigenschaften der Funktionenu i (xj) ein nulldimensionales Ideal des Gradesn. Der Satz könnte ohne prinzipielle Schwierigkeiten auch auf mehrdimensionale Ideale erweitert werden.

  14. u (x j+yj) ist wieder Abkürzung füru(x 1+y1, ..., xm+ym); siehe Anm. 8.

  15. Die Voraussetzung der unbegrenzten Differenzierbarkeit könnte wahrscheinlich durch eine viel geringfügigere ersetzt werden; im einfachsten Fall der Funktionalgleichungu (x+y)=u (x) u (y) genügt die Voraussetzung der Stetigkeit, ja auch schon die bloße Voraussetzung, daßu (x) in einem beliebig kleinen Intervall der Variablenx beschränkt sei. Siehe darüber etwa Picard, Leçons sur quelques équations fonctionelles, Paris 1928, S. 1–4.

  16. Siehe Satz 2. Der direkte Beweis, daß die MatrizenB α ein kommutatives hyperkomplexes System erzeugen, dessen Rang genaun ist, scheint weniger leicht zu sein.

  17. Über diese Voraussetzung siehe Anm. 24.

  18. Das ist also gewissermaßen eine Verallgemeinerung der Exponentialfunktion mit ihren bekannten Eigenschaften auf Matrizen. Naturgemäß können dadurch nur kommutative Gruppen betroffen werden, also eigentliche Untergruppen des vollen Matrizenringes.

  19. Dau *(xj), bzw.u *(yj), nie Nullteiler ist, können wir es unbesorgt in den Nenner setzen; die beiden Quotienten können weder von den Variablenx j noch von deny j abhängen.

  20. Der GrundkörperK muß allenfalls vorher eine passende Erweiterung erfahren haben. die Zahlena ikl in (40) sind also identisch mit denjenigen in (37).

  21. Die Ableitungen deru i(xj) bringen nämlich keine neuen linear unabhängigen Funktionen mehr hervor, siehe Satz 2.

  22. Die folgenden Entwicklungen gelten wieder, soweit nicht anders bemerkt wird, für Ideale beliebiger Dimension.

  23. Es ist jedenfallsq 1(xj)=1.

  24. Siehe Anm. 38.

  25. Wie man bei näherem Zusehen erkennt, beruht die kanonische Basis des § 3 auf einer Verallgemeinerung dieses in dem speziellen Fall der Laplaceschen Differentialgleichung geübten Algorithmus.

  26. Füru −1 ist in diesen Formelnu 0 und füru 0 ist O zu setzen.

  27. Die Ideale, bei denen das der Fall ist, heißen nach Macaulay perfekte Ideale und umfassen insbesondere alle Primideale, sodaß die gemachte Einschränkung kaum ins Gewicht fällt.

  28. Siehe Anm. 17. Damit die Reihen (49) funktionentheoretisch Sinn haben, mußv(x 2) jedenfalls eine beliebig oft differenzierbare oder analytische Funktion sein. Für unseren algebraischen Standpunkt aber genügt es, daßv(x 2) eine formale Potenzreihe inx 2 ist.

  29. Siehe Anm. 15.

  30. Man wird diese Bedingung vielleicht auch streichen können, wenn man sich auf eine Idealtheorie in nicht kommutativen Polynombereichen stützen kann.

  31. Die Ausbeute ist hier allerdings nicht sehr groß, da es sich immer nur um ganz speziell gebaute Diffentialgleichungen handelt, die, wie noch gezeigt wird, auf irgendeine Weise auf Differentialgleichungen mit konstanten Koeffizienten zurückgeführt werden können.

  32. Abkürzung füru i(x1y1,x2y2,...,xmym); siehe Anm. 8.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Ph. Furtwängler zum 70. Geburtstag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gröbner, W. Über die algebraischen Eigenschaften der Integrale von linearen Differentialgleichungen mit konstanten Koeffizienten. Monatsh. f. Mathematik und Physik 47, 247–284 (1939). https://doi.org/10.1007/BF01695500

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01695500

Navigation