Skip to main content
Log in

Mechanisms for the activation/electron transfer of neutrophil NADPH-oxidase complex and molecular pathology of chronic granulomatous disease

  • Review Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Summary

Professional phagocytes, neutrophils, possess a unique membrane-associated NADPH-oxidase system, dormant in resting cells, which becomes activated upon exposure to the appropriate stimuli and catalyzes the one-electron reduction of molecular oxygen to superoxide, O 2 . Oxidase activation involves the assembly, in the plasma membrane, of membrane-bound and cytosolic constituents of the oxidase system, which are disassembled in the resting state. The oxidase system consists of two plasma membrane-bound components; low-potential cytochromeb 558, which is composed of two subunits of 22-kDa, and 91-kDa, and a possible flavoprotein related to the electron transport between NADPH and cytochromeb 558. Recent reports have indicated that FAD-binding sites of the oxidase are contained in cytochromeb 558. At least two cytosolic components, 67-kDa protein and a phosphorylated 47-kDa protein, are known to translocate to the plasma membrane, ensuring assembly of an active O 2 -generating NADPH-oxidase system. It is the purpose of this review to focus on recent data concerning electron transfer mechanisms of the activated neutrophil NADPH-oxidase complex and molecular pathology of chronic granulomatous disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Segal AW (1989) The electron transport chain of the microbicidal oxidase of phagocytic cells and its involvement in the molecular pathology of chronic granulomatous disease. J Clin Invest 83:1785–1793

    PubMed  Google Scholar 

  2. Cross AR, Jones OTJ (1991) Enzymic mechanisms of superoxide production. Biochim Biophys Acta 1057:281–298

    PubMed  Google Scholar 

  3. Morel F, Doussière J, Vignais PV (1991) The superoxidegenerating oxidase of phagocytic cells: physiological, molecular and pathological aspects. Eur J Biochem 201:523–546

    PubMed  Google Scholar 

  4. Babior BM, Kipnes RS, Curnutte JT (1973) Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 52:741–744

    PubMed  Google Scholar 

  5. Babior BM (1978) Oxygen-dependent microbial killing by phagocytes. N Engl J Med 298:659–668

    PubMed  Google Scholar 

  6. Rossi F, Romeo D, Patriarca P (1972) Mechanism of phagocytosis-associated oxidative metabolism in polymorphonuclear leukocytes and macrophages. J Reticuloendothel Soc 12:127–149

    PubMed  Google Scholar 

  7. Repine JE, White JH, Clawson CC, Holmes BM (1974) The influence of phorbol myristate acetate on oxygen consumption by polymorphonuclear leukocytes. J Lab Clin Med 83:911–920

    PubMed  Google Scholar 

  8. Smith RM, Curnutte JR (1991) Molecular basis of chronic granulomatous disease. Blood 77:673–686

    PubMed  Google Scholar 

  9. Segal AW, Jones OTG (1980) Rapid incorporation of the human neutrophil plasma membrane cytochromeb into phagocytic vacuoles. Biochem Biophys Res Commun 92:710–715

    PubMed  Google Scholar 

  10. Garcia RC, Segal AW (1984) Changes in the subcellular distribution of the cytochromeb-245 on stimulation of human neutrophils. Biochem J 219:233–242

    PubMed  Google Scholar 

  11. Segal AW, Jones OTG (1978) Novel cytochromeb system in phagocytic vacuoles from human granulocytes. Nature 276:515–517

    PubMed  Google Scholar 

  12. Cross AR, Jones OTG, Harper AM, Segal AW (1981) Oxidation-reduction properties of the cytochromeb found in the plasma-membrane fraction of human neutrophils: a possible oxidase in the respiratory burst. Biochem J 194:599–606

    PubMed  Google Scholar 

  13. Wood PM (1974) The redox potential of the system oxygensuperoxide. FEBS Lett 44:22–24

    PubMed  Google Scholar 

  14. Royer-Pokora B, Kunkel LK, Monaco AP, Goff SC, Newburger PE, Baehner RL, Cole FS, Curnutte JT, Orkin SH (1986) Cloning the gene for an inherited human disorder — chronic granulomatous disease — on the basis of its chromosomal location. Nature 322:32–38

    PubMed  Google Scholar 

  15. Dinauer MC, Orkin SH, Brown R, Jesaitis AJ, Parkos CA (1987) The glycoprotein encoded by the X-linked chronic granulomatous disease locus is a component of the neutrophil cytochromeb complex. Nature 327:717–720

    PubMed  Google Scholar 

  16. Teahan C, Towe P, Parker P, Totty N, Segal AW (1987) The X-linked chronic granulomatous disease gene codes for the Β-chain of cytochromeb 245. Nature 327:720–721

    PubMed  Google Scholar 

  17. Segal AW (1987) Absence of both cytochromeb-245 subunits from neutrophils in X-linked chronic granulomatous disease. Nature 326:88–91

    PubMed  Google Scholar 

  18. Parkos CA, Allen RA, Cochrane CG, Jesaitis AJ (1987) Purified cytochromeb from human granulocyte plasma membrane is composed of two polypeptides with relative molecular weights of 91000 and 22000. J Clin Invest 80:732–742

    PubMed  Google Scholar 

  19. Yamaguchi T, Hayakawa T, Kaneda M, Kakinuma K, Yoshikawa A (1989) Purification and some properties of the small subunit of cytochromeb 558 from human neutrophils. J Biol Chem 264:112–118

    PubMed  Google Scholar 

  20. Nugent JH, Gratzer W, Segal AW (1989) Identification of the haem-binding subunit of cytochromeb 245. Biochem J 264:921–924

    PubMed  Google Scholar 

  21. Nakamura M, Sendo S, Van Zwieten R, Koga T, Roos D, Kanegasaki S (1988) Immunocytochemical discovery of the 22-to 23-Kd subunit of cytochromeb 558 at the surface of human peripheral phagocytes. Blood 72:1550–1552

    PubMed  Google Scholar 

  22. Kleinberg ME, Rotrosen D, Malech HL (1989) Asparaginelinked glycosylation of cytochromeb 558 large subunit varies in different human phagocytic cells. J Immunol 143:4152–4157

    PubMed  Google Scholar 

  23. Imajoh-Ohmi S, Tokita K, Ochiai H, Nakamura M, Kanegasaki S (1992) Topology of cytochromeb 558 in neutrophil membrane analyzed by anti-peptide antibodies and proteolysis. J Biol Chem 267:180–184

    PubMed  Google Scholar 

  24. Rotrosen D, Kleinberg ME, Nunoi H, Leto T, Gallin JI, Malech HL (1990) Evidence for a functional cytoplasmic domain of phagocyte oxidase cytochromeb 558. J Biol Chem 265:8745–8750

    PubMed  Google Scholar 

  25. Quinn MT, Parkos CA, Walker L, Orkin SH, Dinauer MC (1989) Association of Ras-related protein with cytochromeb of human neutrophils. Nature 342:198–200

    PubMed  Google Scholar 

  26. Quinn MT, Mullen ML, Jesaitis AJ, Linner JG (1992) Subcellular distribution of the Rap1A protein in human neutrophils: Colocalization and cotranslocation with cytochromeb 559. Blood 79:1563–1573

    PubMed  Google Scholar 

  27. Bokoch GM, Quilliam LA, Bohl BP, Jesaitis AJ, Quinn MT (1991) Inhibition of Rap1A binding to cytochromeb 558 of NADPH oxidase by phosphorylation of Rap1A. Science 254:1794–1796

    PubMed  Google Scholar 

  28. Trahey M, McCormick F (1987) A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science 238:542–545

    PubMed  Google Scholar 

  29. Lomax KJ, Leto TL, Nunoi H, Gallin JI, Malech HL (1989) Recombinant 47-kilodalton cytosol factor restores NADPH oxidase in chronic granulomatous disease. Science 245:409–412

    PubMed  Google Scholar 

  30. Eklund EA, Marshall M, Gibbs JB, Crean CD, Gabig TG (1991) Resolution of a low-molecular-weight G protein in neutrophil cytosol required for NADPH oxidase activation and reconstitution by recombinant Krev-1 protein. J Biol Chem 266:13964–13970

    PubMed  Google Scholar 

  31. Cagan RH, Karnovsky ML (1964) Enzymic basis of the respiratory stimulation during phagocytosis. Nature 204:255–257

    PubMed  Google Scholar 

  32. Markert J, Glass GA, Babior BM (1985) Respiratory burst oxidase from human neutrophils: purification and some properties. Proc Natl Acad Sci USA 82:3144–3148

    PubMed  Google Scholar 

  33. Kakinuma K, Kaneda M, Chiba T, Ohnishi T (1986) Electron spin resonance studies on a flavoprotein in neutrophil plasma membranes: redox potentials of the flavin and its participation in NADPH oxidase. J Biol Chem 261:9426–9432

    PubMed  Google Scholar 

  34. Doussière J, Vignais PV (1985) Purification and properties of an O .2 -generating oxidase from bovine polymorphonuclear neutrophils. Biochemistry 24:7231–7239

    PubMed  Google Scholar 

  35. Kakinuma K, Fukuhara Y, Kaneda M (1987) The respiratory burst oxidase of neutrophils. Separation of an FAD enzyme and its characterization. J Biol Chem 262:12316–12322

    PubMed  Google Scholar 

  36. Doussière J, Vignais PV (1988) Immunological properties of O .2 -generating oxidase from bovine neutrophils. FEBS Lett 234:362–366

    PubMed  Google Scholar 

  37. Yea CM, Cross AR, Jones OTG (1990) Purification and some properties of the 45-kDa diphenylene iodonium-binding flavoprotein of neutrophil NADPH oxidase. Biochem J 265:95–100

    PubMed  Google Scholar 

  38. Parkinson JF, Gabig TG (1988) Phagocyte NADPH-oxidase. Studies with flavin analogues as active-site probes in Triton X-100-solubilized preparations. J Biol Chem 263:8859–8863

    PubMed  Google Scholar 

  39. Bromberg T, Pick E (1985) Activation of NADPH-dependent superoxide production in a cell-free system by sodium dodecyl sulfate. J Biol Chem 260:13539–13545

    PubMed  Google Scholar 

  40. Sumimoto H, Sakamoto N, Nozaki M, Sakaki Y, Takeshige K, Minakami S (1992) Cytochromeb 558, a component of the phagocyte NADPH oxidase, is a flavoprotein. Biochem Biophys Res Commun 186:1368–1375

    PubMed  Google Scholar 

  41. Sha'ag D, Pick E (1988) Macrophage-derived superoxidegenerating NADPH oxidase in an amphiphile-activated, cell-free system; partial purification of the cytosolic component and evidence that it may contain the NADPH-binding site. Biochim Biophys Acta 952:213–219

    PubMed  Google Scholar 

  42. Segal AW, West I, Wientjes F, Nugent JHA, Chavan AJ, Haley B, Rosen RC, Scrace G (1992) Cytochromeb 245 is a flavocytochrome containing FAD and the NADPH-binding site of the microbicidal oxidase of phagocytes. Biochem J 284:781–788

    PubMed  Google Scholar 

  43. Knoller S, Shpungin S, Pick E (1991) The membrane-associated component of the amphiphile-activated, cytosol-dependent superoxide-forming NADPH oxidase of macrophages is identical to cytochromeb 558. J Biol Chem 266:2795–2804

    PubMed  Google Scholar 

  44. Karplus PA, Daniels MJ, Herriott JR (1991) Atomic structure of ferredoxin-NADP+ reductase: prototype for a structurally novel flavoenzyme family. Science 251:60–66

    PubMed  Google Scholar 

  45. Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH (1991) Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 351:714–718

    PubMed  Google Scholar 

  46. Rotrosen D, Yeung CL, Leto TL, Malech HL, Kwong CH (1992) Cytochromeb 558: the flavin-binding component of the phagocyte NADPH oxidase. Science 256:1459–1462

    PubMed  Google Scholar 

  47. Umeki S (1990) Human neutrophil cytosolic activation factor of the NADPH oxidase: characterization of activation kinetics. J Biol Chem 265:5049–5054

    PubMed  Google Scholar 

  48. Cox JA, Jeng AY, Sharkey NA, Blumberg PM, Tauber AI (1985) Activation of the human neutrophil nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase by protein kinase C. J Clin Invest 76:1932–1938

    PubMed  Google Scholar 

  49. Bromberg Y, Pick E (1984) Unsaturated fatty acids stimulate NADPH-dependent superoxide production by cell-free system derived from macrophages. Cell Immunol 88:213–221

    PubMed  Google Scholar 

  50. Heyneman RA, Vercauteren RE (1984) Activation of an NADPH oxidase from horse polymorphonuclear leukocytes in a cell-free system. J Leukocyte Biol 36:751–759

    PubMed  Google Scholar 

  51. Umeki S (1990) Activation of the NADPH oxidase in a cellfree system from human neutrophils stimulated by phorbol myristate acetate. Life Sci 46:1111–1118

    PubMed  Google Scholar 

  52. Babior BM, Kuver R, Curnutte JT (1988) Kinetics of activation of the respiratory burst oxidase in a fully soluble system from human neutrophils. J Biol Chem 263:1713–1718

    PubMed  Google Scholar 

  53. Nunoi H, Rotrosen D, Gallin JI, Malech HL (1988) Two forms of autosomal chronic granulomatous disease lack distinct neutrophil cytosol factors. Science 242:1298–1301

    PubMed  Google Scholar 

  54. Volpp BD, Nauseef WM, Clark RA (1988) Two cytosolic neutrophil oxidase components absent in autosomal chronic granulomatous disease. Science 242:1295–1297

    PubMed  Google Scholar 

  55. Caldwell SE, McCall CE, Hendricks CL, Leone PA, Bass DA, McPhail LC (1988) Coregulation of NADPH oxidase activation and phosphorylation of a 48-kD protein(s) by a cytosolic factor defective in autosomal recessive chronic granulomatous disease. J Clin Invest 81:1485–1496

    PubMed  Google Scholar 

  56. Bolscher BGJM, Van Zwieten R, Kramer IJM, Weening RS, Verhoeven AJ, Roos D (1989) A phosphoprotein of Mr 47000, defective in autosomal chronic granulomatous disease copurifies with one of two soluble components required for NADPH:O2 oxidoreductase activity in human neutrophils. J Clin Invest 83:757–763

    PubMed  Google Scholar 

  57. Hayakawa T, Suzuki K, Suzuki S, Andrews PC, Babior EM (1986) A possible role for protein phosphorylation in the activation of the respiratory burst in human neutrophils. Evidence from studies with cells from patients with chronic granulomatous disease. J Biol Chem 261:9109–9115

    PubMed  Google Scholar 

  58. Uhlinger DJ, Burnham DN, Lambeth JD (1991) Nucleotide triphosphate requirements for superoxide generation and phosphorylation in a cell-free system from human neutrophils. Sodium dodecyl sulfate and diacylglycerol activate independently of protein kinase C. J Biol Chem 266:20990–20997

    PubMed  Google Scholar 

  59. Heyworth PG, Segal AW (1986) Further evidence for the involvement of a phosphoprotein in the respiratory burst oxidase of human neutrophils. Biochem J 239:723–731

    PubMed  Google Scholar 

  60. Kramer IJM, Verhoeven AJ, Van der Bend RL (1988) Purified protein kinase C phosphorylates a 47-kDa protein in control neutrophil cytoplasts but not in neutrophil cytoplasts from patients with the autosomal form of chronic granulomatous disease. J Biol Chem 263:2352–2357

    PubMed  Google Scholar 

  61. Badwey JA, Robinson JM, Heyworth PG, Curnutte JT (1989) 1,2-Dioctanoyl-sn-glycerol can stimulate neutrophils by different mechanisms. Evidence for a pathway that does not involve phosphorylation of the 47-kDa protein. J Biol Chem 264:20676–20682

    PubMed  Google Scholar 

  62. Sha'afi RI, Molski TFP, Gomez-Cambronero J, Huang C-K (1988) Dissociation of the 47-kilodalton protein phosphorylation from degranulation and superoxide production in neutrophils. J Leukocyte Biol 43:18–27

    PubMed  Google Scholar 

  63. Rotrosen D, Leto TL (1990) Phosphorylation of neutrophil 47-kDa cytosolic oxidase factor. Translocation to membrane is associated with distinct phosphorylation events. J Biol Chem 265:19910–19915

    PubMed  Google Scholar 

  64. Clark RA, Volpp BD, Leidal KG, Nauseef WM (1990) Two cytosolic components of the human neutrophil respiratory burst oxidase translocate to the plasma membrane during cell activation. J Clin Invest 85:714–721

    PubMed  Google Scholar 

  65. Heyworth PG, Curnutte JT, Nauseef WM, Volpp BD, Pearson DW, Rosen H, Clark RA (1991) Neutrophil nicotinamide adenine dinucleotide phosphate oxidase assembly. Translocation of p47-phox and p67-phox requires interaction between p47-phox and cytochromeb 558. J Clin Invest 87:352–356

    PubMed  Google Scholar 

  66. Tyagi SR, Neckelmann N, Uhlinger DJ, Burnham DN, Lambeth JD (1992) Cell-free translocation of recombinant p47-phox, a component of the neutrophil NADPH oxidase: effects of guanosine 5′-O-(3-thiotriphosphate), diacylglycerol, and an anionic amphiphile. Biochemistry 31:2765–2774

    PubMed  Google Scholar 

  67. Okamura N, Babior BM, Mayo LA, Peveri P, Smith RM, Curnutte JT (1990) The p67-phox cytosolic peptide of the respiratory burst oxidase from human neutrophils. Functional aspects. J Clin Invest 85:1583–1587

    PubMed  Google Scholar 

  68. Fujimoto S, Smith RM, Curnutte JT, Babior BM (1989) Evidence that activation of the respiratory burst oxidase in a cell-free system from human neutrophils is accomplished in part through an alteration of the oxidase related 67-kDa cytosolic protein. J Biol Chem 264:21629–21632

    PubMed  Google Scholar 

  69. Teahan CG, Totty N, Casimir CM, Segal AW (1990) Purification of the 47-kDa phosphoprotein associated with the NADPH oxidase of human neutrophils. Biochem J 267:485–489

    PubMed  Google Scholar 

  70. Nauseef WM, Volpp BD, Clark RA (1990) Immunochemical and electrophoretic analyses of phosphorylated native and recombinant neutrophil oxidase component p47-phox. Blood 76:2622–2629

    PubMed  Google Scholar 

  71. Tanaka T, Imajoh-Ohmi S, Kanegasaki S, Ishimura I (1990) A 63-kilodalton cytosolic polypeptide involved in superoxide generation in porcine neutrophils. J Biol Chem 265:18717–18720

    PubMed  Google Scholar 

  72. Pilloud-Dagher M-C, Vignais PV (1991) Purification and characterization of an oxidase activating factor of 63 kilodaltons from bovine neutrophils. Biochemistry 30:2753–2760

    PubMed  Google Scholar 

  73. Volpp BD, Nauseef WM, Donelson JE, Moser DR, Clark RA (1989) Cloning of the cDNA and functional expression of the 47-kilodalton cytosolic component of human neutrophil respiratory burst oxidase. Proc Natl Acad Sci USA 86:7195–7199

    PubMed  Google Scholar 

  74. Leto TL, Lomax KJ, Volpp BD, Nunoi H, Sechler JMG, Nauseef WM, Clark RA, Gallin JI, Malech HL (1990) Cloning of a 67-kD neutrophil oxidase factor with similarity to a noncatalytic region of p60c-src. Science 248:727–730

    PubMed  Google Scholar 

  75. Okamura N, Curnutte JT, Roberts RL, Babior BM (1988) Relationship of protein phosphorylation to the activation of the respiratory burst in human neutrophils. Defects in the phosphorylation of a group of closely related 48-kDa proteins in two forms of chronic granulomatous disease. J Biol Chem 263:6777–6782

    PubMed  Google Scholar 

  76. Hall A (1990) The cellular functions of small GTP-binding proteins. Science 249:635–640

    PubMed  Google Scholar 

  77. Abo A, Pick E, Hall A, Totty N, Teahan CG, Segal AW (1991) Activation of the NADPH oxidase involves the small GTP-binding protein p21racl. Nature 353:668–670

    PubMed  Google Scholar 

  78. Knaus UG, Heyworth PG, Kinsella BT, Curnutte JT, Bokoch GM (1992) Purification and characterization of Rac 2. A cytosolic GTP-binding protein that regulates human neutrophil NADPH oxidase. J Biol Chem 267:23575–23582

    PubMed  Google Scholar 

  79. Koppenol WH (1989) Generation and thermodynamic properties of oxyradicals. In: CRC Critical reviews in membrane lipid oxidation, vol 1. CRC Press, Boca Raton, pp 1–13

    Google Scholar 

  80. Cross AR, Parkinson JF, Jones OTG (1985) Mechanism of the superoxide-producing oxidase of neutrophils. O2 is necessary for the fast reduction of cytochromeb-245 by NADPH. Biochem J 226:881–884

    PubMed  Google Scholar 

  81. Iizuka T, Kanegasaki S, Makino R, Tanaka T, Ishimura Y (1985) Pyridine and imidazole reversibly inhibit the respiratory burst in porcine and human neutrophils: evidence for the involvement of cytochromeb 558 in the reaction. Biochem Biophys Res Commun 130:621–626

    PubMed  Google Scholar 

  82. Wainio WW, Greenlees J (1960) Complexes of cytochromec oxidase with cyanide and carbon monoxide. Arch Biochem Biophys 90:18–21

    PubMed  Google Scholar 

  83. Ishimura Y, Ullrich V, Peterson JA (1971) Oxygenated cytochrome P-450 and its possible role in enzymic hydroxylation. Biochem Biophys Res Commun 42:140–146

    PubMed  Google Scholar 

  84. Iizuka T, Kanegasaki S, Makino R, Tanaka T, Ishimura Y (1985) Studies on neutrophilb-type cytochrome in situ by low-temperature absorption spectroscopy. J Biol Chem 260:12049–12053

    PubMed  Google Scholar 

  85. Butler J, Koppenol WH, Margoliash E (1982) Kinetics and mechanism of the reduction of ferricytochromec by the superoxide anion. J Biol Chem 257:10747–10750

    PubMed  Google Scholar 

  86. Porter TD, Kasper CB (1986) NADPH-cytochrome P-450 oxidoreductase: flavin mononucleotide and flavin adenine dinucleotide domains evolved from different flavoproteins. Biochemistry 25:1682–1687

    PubMed  Google Scholar 

  87. Crawford NM, Smith M, Bellissimo D, Davis RW (1988) Sequence and nitrate regulation of theArabidopsis thaliana mRNA encoding nitrate reductase, a metalloflavoprotein with three functional domains. Proc Natl Acad Sci USA 85:5006–5010

    PubMed  Google Scholar 

  88. Ostrowski J, Barber MJ, Rueger DC, Miller BE, Siegel LM, Kredich NM (1989) Characterization of the flavoprotein moieties of NADPH-sulfate reductase fromSalmonella typhimurium andEscherichia coli. Physicochemical and catalytic properties, amino acid sequence deduced from DNA sequence ofcysJ, and comparison with NADPH-cytochrome P-450 reductase. J Biol Chem 264:15796–15808

    PubMed  Google Scholar 

  89. Quinn MT, Mullen ML, Jesaitis AJ (1992) Human neutrophil cytochromeb contains multiple hemes. Evidence for heme associated with both subunits. J Biol Chem 267:7303–7309

    PubMed  Google Scholar 

  90. Clark RA, Malech HL, Gallin JI, Nunoi H, Volpp BD, Pearson D, Nauseef WM, Curnutte JT (1989) Genetic variants of chronic granulomatous disease: prevalence of deficiencies of two cytosolic components of the NADPH oxidase system. N Engl J Med 321:647–652

    PubMed  Google Scholar 

  91. Umeki S (1991) Topics in chronic granulomatous disease. Pediatrics 88:183–185

    PubMed  Google Scholar 

  92. Heyworth PG, Shrimpton CF, Segal AW (1989) Localization of the 47-kDa phosphoprotein involved in the respiratoryburst NADPH oxidase of phagocytic cells. Biochem J 260:243–248

    PubMed  Google Scholar 

  93. Ohno Y, Buescher ES, Roberts R, Metcalf JA, Gallin JI (1986) Reevaluation of cytochromeb and flavin adenine dinucleotide in neutrophils from patients with chronic granulomatous disease, and description of a family with probable autosomal recessive inheritance of cytochromeb deficiency. Blood 67:1132–1138

    PubMed  Google Scholar 

  94. Francke U, Hsieh C-L, Foellmer BE, Lomax KJ, Malech HL, Leto TL (1990) Genes for two autosomal recessive forms of chronic granulomatous disease assigned to 1q25 (NCF2) and 7q11.23 (NCF1). Am J Hum Genet 47:483–492

    PubMed  Google Scholar 

  95. Kalomiris EL, Bourguignon LYW (1989) Lymphoma protein kinase C is associated with the transmembrane glycoprotein, gp85, and may function in gp85-ankyrin binding. J Biol Chem 264:8113–8119

    PubMed  Google Scholar 

  96. Dinauer MC, Pierce EA, Bruns GA, Curnutte JT, Orkin SH (1990) Human neutrophil cytochromeb light chain (p22-phox). Gene structure, chromosomal location, and mutations in cytochrome-negative autosomal recessive chronic granulomatous disease. J Clin Invest 86:1729–1737

    PubMed  Google Scholar 

  97. Parkos CA, Dinauer MC, Jesaitis AJ, Orkin SH, Curnutte JT (1989) Absence of both the 91-kD and 22-kD subunits of human neutrophil cytochromeb in two genetic forms of chronic granulomatous disease. Blood 73:1416–1420

    PubMed  Google Scholar 

  98. Dinauer MC, Pierce EA, Erickson RW, Muhlebach TJ, Messner H, Orkin SH, Seger RA, Curnutte JT (1991) Point mutation in the cytoplasmic domain of the neutrophil p22-phox cytochromeb subunit is associated with a nonfunctional NADPH oxidase and chronic granulomatous disease. Proc Natl Acad Sci USA 88:11231–11235

    PubMed  Google Scholar 

  99. Dinauer MC, Curnutte JT, Rosen H, Orkin SH (1989) A missense mutation in the neutrophil cytochromeb heavy chain in cytochrome-positive X-linked chronic granulomatous disease. J Clin Invest 84:2012–2016

    PubMed  Google Scholar 

  100. The International Chronic Granulomatous Disease Cooperative Study Group (1991) A controlled trial of interferon gamma to prevent infection in chronic granulomatous disease. N Engl J Med 324:509–516

    Google Scholar 

  101. Berton G, Zeni L, Cassatella NA, Rossi F (1986) Gamma interferon is able to enhance the oxidative metabolism of human neutrophils. Biochem Biophys Res Commun 138:1276–1282

    PubMed  Google Scholar 

  102. Ezekowitz RAB, Okin SH, Newburger PE (1987) Recombinant interferon gamma augments phagocyte superoxide production and X-chronic granulomatous disease gene expression in X-linked variant chronic granulomatous disease. J Clin Invest 80:1009–1016

    PubMed  Google Scholar 

  103. Sechler JMG, Malech HL, White CJ, Gallin JI (1988) Recombinant human interferon-γ reconstitutes defective phagocyte function in patients with chronic granulomatous disease of childhood. Proc Natl Acad Sci USA 85:4874–4878

    PubMed  Google Scholar 

  104. Ezekowitz RAB, Dinauer MC, Jaffe HS, Orkin SH, Newburger PE (1988) Partial correction of the phagocyte defect in patients with X-linked chronic granulomatous disease by subcutaneous interferon gamma. N Engl J Med 319:146–151

    PubMed  Google Scholar 

  105. Woodman RC, Erickson RW, Rae J, Jaffe HS, Curnutte JT (1992) Prolonged recombinant interferon-γ therapy in chronic granulomatous disease: evidence against enhanced neutrophil oxidase activity. Blood 79:1558–1562

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umeki, S. Mechanisms for the activation/electron transfer of neutrophil NADPH-oxidase complex and molecular pathology of chronic granulomatous disease. Ann Hematol 68, 267–277 (1994). https://doi.org/10.1007/BF01695032

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01695032

Key words

Navigation