Skip to main content
Log in

Mast cells in neuroimmune function: Neurotoxicological and neuropharmacological perspectives

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Mast cells are located in close proximity to neurons in the peripheral and central nervous systems, suggesting a functional role in normal and aberrant neurodegenerative states. They also possess many of the features of neurons, in terms of monoaminergic systems, responsiveness to neurotrophins and neuropeptides and the ability to synthesise and release bioactive neurotrophic factors. Mast cells are able to secrete an array of potent mediators which may orchestrate neuroinflammation and affect the integrity of the blood-brain barrier. The ‘cross-talk’ between mast cells, lymphocytes, neurons and glia constitutes a neuroimmune axis which is implicated in a range of neurodegenerative diseases with an inflammatory and/or autoimmune component, such as multiple sclerosis and Alzheimer's disease. Mast cells appear to make an important contribution to developing, mature and degenerating nervous systems and this should now be recognised when assessing the neurotoxic potential of xenobiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AChE:

acetylcholinesterase

ALS:

amyotrophic lateral sclerosis

APP:

amyloid precursor protein

BBB:

blood-brain barrier

BDNF:

brain-derived neurotrophic factor

CGRF:

calcitonin gene-related peptide

CNS:

central nervous system

CNTF:

ciliary neurotrophic factor

CSF:

cerebrospinal fluid

C48/80:

compound 48/80

CTMC:

connective tissue mast cells

EAA:

excitatory amino acids

EAE:

experimental allergic encephalomyelitis

ECMA:

ethylcholine mustard aziridinium ion

FACS:

fluorescent activated cell sorter

5HT:

5-hydroxytryptamine (serotonin)

HMT:

histamine-N-methyltransferase

HPMC:

human placental mast cells

HRNGF:

human recombinant nerve growth factor

IgE:

immunoglobulin E

MMC:

methyl mercuric chloride

MAOI:

monoamine oxidase inhibitors

MDMA:

methylenedioxymetamphetamine

MS:

multiple sclerosis

NGF:

nerve growth factor

NT3:

neurotrophin 3

PNS:

peripheral nervous system

RBMC:

rat brain mast cells

ROS:

reactive oxygen species

RPMC:

rat peritoneal mast cells

SLE:

systemic lupus erythematosus

SP:

substance P

TCA:

trichloroacetic acid

THA:

tetrahydroacridine

TCA:

tricyclic antidepressants

References

  1. Kaliner, M., and Austen, K. F. 1975. Immunologic release of chemical mediators from human tissues. Ann. Rev. Pharmacol. Toxicol. 15:177–189.

    Google Scholar 

  2. Sutton, B. J., and Gould, H. J. 1993. The human IgE network. Nature 366:424–428

    Google Scholar 

  3. Leon, A., Buriani, A., Dal Toso, R., Fabris, M., Romanello, S., Aloe, L., and Levi-Montalcini, R. 1994. Mast cells synthesise, store, and release nerve growth factor. Proc. Natl. Acad. Sci. USA 91:3739–3743.

    PubMed  Google Scholar 

  4. Theoharides, T. C. 1990. Mast cells: the immune gate to the brain. Life Sci. 46:607–617.

    PubMed  Google Scholar 

  5. Purcell, W. M., and Atterwill, C. K. 1994. Human placental mast cells as an in vitro model system in aspects of neuro-immunotoxicity testing. Human & Exp. Toxicol. 13:429–433.

    Google Scholar 

  6. Purcell, W. M., and Atterwill, C. K. 1994. Rodent and human mast cells as an in vitro model in neuroimmunotoxicity testing. Toxicol. In Vitro 8:327–630.

    Google Scholar 

  7. Atterwill, C. K., and Purcell, W. M. 1993. Human models for the in vitro assessment of neurotoxicity. Pages 137–168, in Rogiers, V. (ed.), Human cells in toxicity testing, Brussels, EC.

  8. Dimitriadou, V., Lambracht-Hall, M., Reichler, J., and Theoharides, T. C. 1990. Histochemical and ultrastructural characteristics of rat brain perivascular mast cells stimulated with compound 48/80 and carbachol. Neurosci. 39:209–224.

    Google Scholar 

  9. Larsen, G. L., and Henson, P. M. 1983. Mediators of inflammation. Ann. Rev. Immunol. 1:335–359.

    Google Scholar 

  10. Katz, H. R., Stevens, R. I., Austen, M. D. 1985. Leukotrienes and prostaglandin pathway metabolism: heterogeneity of mammalian mast cells. J. Allergy Clin. Immunol. 76:250–259.

    PubMed  Google Scholar 

  11. Plaut, M., Pierce, J. H., Watson, C. J., Hanley-Hyde, J., Nordan, R. P., and Paul, W. E. 1989. Mast cell lines produce lymphokines in response to cross-linking of FcεRI or calcium ionophores. Nature 339:64–67.

    PubMed  Google Scholar 

  12. Gordon, J. R., Burd, P. R., and Galli, S. J. 1990. Mast cells as a source of multifunctional cytokines. Immunol. Today 11:458–463.

    PubMed  Google Scholar 

  13. Gushin, I. S., Petyaev, I. M., and Tsinkalovsky, O. R. 1990. Kinetics of oxygen metabolism indices in the course of histamine secretion from rat mast cells. Agents & Actions 30:85–88.

    Google Scholar 

  14. Pearce, F. L., and Thompson, H. L. 1986. Some characteristics of histamine secretion from rat peritoneal mast cells stimulated with nerve growth factor. J. Physiol. 372:379–393.

    PubMed  Google Scholar 

  15. Horigome, K., Pryor, J. C., Bullock, E. D., and Johnson, E. M., 1993. Mediator release from mast cells by nerve growth factor: neurotrophin specificity and receptor mediation. J. Biol. Chem. 268:144881–144887.

    Google Scholar 

  16. Piotrowski, W., Devoy, M. A. B., Jordan, C. C., and Foreman, J. C. 1984. The substance P receptor on mast cells and in human skin. Agents & Actions 14:420–424.

    Google Scholar 

  17. Devillier, P., Regoli, D., Asseraf, A., Descours, B., Marsac, J., and Renoux, M. 1986. Histamine release and local responses of rat and human skin to substance P and other tachykinins. Pharmacol. 32:340–347.

    Google Scholar 

  18. Brenner, T., Soffer, D., Shalit, M., and Levi-Schaffer, F. 1994. Mast cells in experimental allergic encephalomyelitis: characterization, distribution in the CNS and in vitro activation by myelin basic protein and neuropeptides. J. Neurol. Sci. 122:210–213.

    PubMed  Google Scholar 

  19. Purcell, W. M., Doyle, K. D., Bagga, L., and Derks, M. 1994. Histamine release from mast cells by polyamines: an NMDA receptor-mediated event? Biochem. Soc. Trans. 22:398S.

    Google Scholar 

  20. Pryor, J. C., Horigome, K., and Johnston, E. M. 1992. Mast cells express the Trk but not low affinity nerve growth factor receptor. Soc. Neurosci. Abs. 950:401.17.

    Google Scholar 

  21. Riccardi, V. M. 1990. Tuberous sclerosis and neurofibromatosis: the potential role of trauma and mast cells in the pathogenesis of neurofibromas. Pages 167–190, in Tuberous sclerosis and neuofibromatosis, Elsevier.

  22. Cacabelos, R., Yamatodami, A., Niigawa, H., Hariguchi, S., Tada, K., Mishimura, T., Wada, L., Brandeis, L., and Pearson, J. 1989. Brain histamine in Alzheimer's disease. Meth. & Find. Exp. Clin. Pharmacol. 11:353–360.

    Google Scholar 

  23. Domer, F. F., Boertje, S. B., Bing, E. G., and Reddix, I. 1983. Histamine- and acetylcholine-induced changes in the permeability of the blood-brain barrier of normotensive and spontaneously hypertensive rats. Neuropharm. 22:615–619.

    Google Scholar 

  24. Kowalski, M. L., and Kaliner, M. A. 1988. Neurogenic inflammation, vascular permeability and mast cells. J. Immunol. 140: 3905–3911.

    PubMed  Google Scholar 

  25. Purcell, W. M., Cohen, D. L., and Hanahoe, T. H. P. 1989. Contribution of post-secretory mechanisms to the observed pattern of histamine and 5-hydroxytryptamine secretion, from rat peritoneal mast cells in response to compound 48/80. Int. Archs. Allergy Appl. Immunol. 90:387–394.

    Google Scholar 

  26. Purcell, W. M., and Hanahoe, T. H. P. 1990. The activity of amitriptyline as a differential inhibitor of amine secretion from rat peritoneal mast cells: the contribution of amine uptake. Agents & Actions 30:41–43.

    Google Scholar 

  27. Cacabelos, R. 1991. Neuroimmune function in mental disorders. An. Psiquiat. 2:135–154.

    Google Scholar 

  28. Cacabelos, R. 1990. Histaminergic system: neuroendocrine function of brain histamine. Meth. Find. Exp. Clin. Pharmacol. 12: 341–376.

    Google Scholar 

  29. Baumgarten, G., Garattin, S., Lorens, S., and Wurtman, P. 1992. Dexfenfluramine and neurotoxicity. Lancet 339:359–361.

    Google Scholar 

  30. Purcell, W. M., Cohen, D. L., and Hanahoe, T. H. P. 1989. Comparison of histamine and 5-hydroxytryptamine content and secretion in rat mast cells isolated from different anatomical locations. Int. Archs. Allergy Appl. Immunol. 90:382–386.

    Google Scholar 

  31. Derks, M., Atterwill, C. K., and Purcell, W. M. 1994. Rat brain mast cells: isolation and preliminary characterisation. Proc. EHRS, Hungary, May 1994; Conference Paper.

  32. Purcell, W. M., and Hanahoe, T. H. P. 1990. Human placenta: a novel source of mast cells. Br. J. Pharmacol. 100:334.

    Google Scholar 

  33. Purcell, W. M., and Hanahoe, T. H. P. 1991. A novel source of mast cells: the human placenta. Agents & Actions33:8–12.

    Google Scholar 

  34. Ennis, M., and Pearce, F. L. 1980. Differential reactivity of isolated mast cells from the rat and guinea pig. Eup. J. Pharmacol. 66:339–345.31.

    Google Scholar 

  35. Levi-Schaffer, F., Austen, K. F., Caulfield, J. P., Hein, A., Bloes, W. F., and Stevens, R. L. 1985. Fibroblasts maintain the phenotype and viability of the rat heparin-containing mast cells in vitro. J. Immunol. 135:3454–3462.

    PubMed  Google Scholar 

  36. Seeldrayers, P. A., Levin, L. A., and Johnson, D. 1992. Astrocytes support mast cell viability in vitro. J. Neuroimmunol. 36: 239–243.

    PubMed  Google Scholar 

  37. Atterwill, C. K. 1989. Brain reaggregate cultures in neurotoxicological investigations: adaptational and neuroregenerative processes following lesions. Mol. Toxicol. 1:489–502.

    Google Scholar 

  38. Lindsay, R. M., Wiegand, S. J., Altar, C. C., and DiStefano, P. 1994. Neurotrophic factors: from molecules to man. TiNS 17: 182–190.

    PubMed  Google Scholar 

  39. Bondy, S. C. 1992. Reactive oxygen species: relation to aging and neurotoxic damage. Neurotoxicol. 13:87–100.

    Google Scholar 

  40. Olanow, C. W. 1993. A radical hypothesis for neurodegeneration. TiNS 16:439–444.

    PubMed  Google Scholar 

  41. Aloe, L., and DeSimone, R. 1989. NGF primed spleen cells injected in brain of developing rats differentiate into mast cells. Int. J. Devl. Neurosci. 7:565–573.

    Google Scholar 

  42. Aloe, L. 1988. The effect of nerve growth factor and its' antibody on mast cells in vivo. J. Neuroimmunol. 18:1–12.

    PubMed  Google Scholar 

  43. Ratan, R. 1994. Apoptotic death in an in vitro model of neuronal oxidative stress. Proc. XIIth IUPHAR Satellite on ‘In Vitro Neurotoxicology’, Canada, July 1994. In press, Clin. & Exp. Neurol.

  44. Allen, Y. 1994. Neurotoxicity of ß-amyloid protein: cytoskeletal change and apoptotic cell death investigated in organotypic cultures. Proc. XIIth IUPHAR Satellite on ‘In Vitro Neurotoxicology’, Canada, July 1994. In press, Clin. & Exp. Neurol.

  45. Goldschmidt, R. C., Hough, L. B., and Glick, S. D. 1985. Rat brain mast cells: contribution to brain histamine levels. J. Neurochem. 44:1943–1947.

    PubMed  Google Scholar 

  46. Singer, W. 1994. A new job for the thalamus. Nature 369:444–445.

    PubMed  Google Scholar 

  47. Ferrer, I., Picatoste, F., Rodergas, E., Garcia, A., Sabria, J., and Blanco, I. 1979. Histamine and mast cells in developing rat brain. J. Neurochem. 32:587–592.

    Google Scholar 

  48. Rosenblaum, W. I. 1972. A possible role for mast cells in controlling the diameter of arterioles on the surface of the brain. Brain Res. 42:75–82.

    Google Scholar 

  49. Sercombe, R., Verricchia, C., Philipson, V., Oudart, N., Dimitriadou, V., Bouchaud, C., and Seylaz, J. 1986. Histamine-induced constriction and dilation of rabbit middle cerebral arteries in vitro: role of the endothelium. Blood Vessels. 23:137–153.

    PubMed  Google Scholar 

  50. Kohler, F. W., Gautieri, R. F., and Mann, D. E. 1988. Detection of histamine in human placental perfusate and the effect of histamine releasers. Res. Commun. Chem. Pathol. Pharmacol. 61: 185–190.

    PubMed  Google Scholar 

  51. Anton, A. H., and Sayre, D. F. 1969. A modified fluorimetric procedure for tissue histamine and its distribution in various animals. J. Pharmacol. Exp. Ther. 166:285–292.

    PubMed  Google Scholar 

  52. Hough, L. B. 1988. Cellular localization and possible functions for brain histamine: recent progress. Prog. Neurobiol. 30:469–505.

    PubMed  Google Scholar 

  53. Laudiero, L. B., Aloe, L., Levi-Montalcini, R., Buttinelli, C., Schilter, D., Gillessen, S., and Otten, U. 1992. Multiple sclerosis patients express increased levels of ß-nerve growth factor in cerebrospinal fluid. Neurosci. Letts. 147:9–12.

    Google Scholar 

  54. Kostyk, S. K., Kowall, N. W., and Hauser, S. L. 1988. Substance P immunoreactive astrocytes in multiple sclerosis plaques. Neurosci. 14:57–1061.

    Google Scholar 

  55. Whittemore, S. R., and Seiger, A. 1987. The expression, localization and functional significance of ß-nerve growth factor in the central nervous system. Brain Res. 12:439–464.

    Google Scholar 

  56. Thoenen, H., Bandtlow, C., and Heumann, R. 1987. The physiological function of nerve growth factor in the central nervous system: comparison with the periphery. Rev. Physiol. & Biochem. 109:145–178.

    Google Scholar 

  57. Levi-Montalcini, R. 1987. The nerve growth factor 35 year later. Science 237:1154–1162.

    PubMed  Google Scholar 

  58. Otten, U., and Ehrhard, P. B. 1994. Neurotrophins—signals between the nervous and immune systems. J. Neurochem. 63: Suppl. 1, S21D.

    Google Scholar 

  59. MacGrogan, D., Saint-Andre, J. P., and Dicou, E. 1992. Expression of nerve growth factor and nerve growth factor receptor genes in human tissues and in prostatic adenocarcinoma cell lines. J. Neurochem. 59:1381–1391.

    PubMed  Google Scholar 

  60. Draberova, L. 1989. The involvement of Thy-1 antigen in the activation of rat mast cells. Eup. J. Immunol. 129:147–159.

    Google Scholar 

  61. Snider, W. D., and Johnson, E. M. 1989. Neurotrophic molecules. Ann. Neurol. 26:489–506.

    PubMed  Google Scholar 

  62. Eide, F. F., Lowenstein, D. H., and Reichardt, L. F. 1993. Neurotrophins and their receptors—current concepts and implications for neurologic disease. Exp. Neurol. 121:200–214.

    PubMed  Google Scholar 

  63. Aloe, L., Tuveri, M., Carcassi, V., and Levi-Montalcini, R. 1992. Nerve growth factor in the synovial fluid of patients with chronic arthritis. Athritis Rheum. 35:7–19.

    Google Scholar 

  64. Dicou, E., Hurez, D., and Nerriere, V. 1993. Natural autoantibodies against the nerve growth factor in autoimmune diseases. J. Neuroimmunol. 47:159–167.

    PubMed  Google Scholar 

  65. Tomioka, M., Stead, R. H., Nielsen, L., Coughlin, M. D., and Beinenstock, J. 1988. Nerve growth factor enhances antigen and other secretagogue induced histamine release from rat peritoneal mast cells in the absence of phosphatidylserine. J. Allergy Clin. Immunol. 82:599–607.

    PubMed  Google Scholar 

  66. Snow, R. W., and Weinreich, D. 1987. Presynaptic and postsynaptic effects of histamine and histamine agonists in the superior cervical ganglion of the rat. Neuropharm. 26:743–752.

    Google Scholar 

  67. Atterwill, C. K., and Meakin, J. M. 1990. Delayed treatment with nerve growth factor reverses ECMA-induced cholinergic lesions in rat brain reaggregate cultures. Biochm. Pharmacol. 39:2073–2076.

    Google Scholar 

  68. Marshall, J. S., Stead, R. H., McSharry, C., Nielsen, L., and Bienenstock, J. 1990. The role of mast cell degranulation products in mast cell hyperplasia. I. Mechanism of action of nerve growth factor. J. Immunol. 144:1886–1892.

    PubMed  Google Scholar 

  69. Horigome, K., Lamp, P. A., and Johnson, E. M. 1992. Effects of NGF on rat peritoneal mast cells: survival promotion and immediate early gene induction. Soc. Neurosci. Abs. 950:401.16.

    Google Scholar 

  70. Rogers, B. C., Hardy, L., Thomsen, K., Noxon, A., and Green, J. D. 1993. Reduction in dosing frequency increases the toxicity of human recombinant nerve growth factor (hrNGF) in mice. The Toxicol. 13:397–398.

    Google Scholar 

  71. Dray, A., and Bevan, S. 1993. Inflammation and hyperalgesia: highlighting the team effort. TiPS 14:287–290.

    PubMed  Google Scholar 

  72. Kacchi, K., Furulawa, Y., Ikegami, R., Nakamura, N., Omae, F., Hashimoto, Y., Hayashi, K., and Furukawa, S. 1993. Pharmacological induction of physiologically active nerve growth factor in rat peripheral nervous system. J. Pharm. Exp. Ther. 264:321–326.

    Google Scholar 

  73. Naukkarinen, A., Harvima, L., Paukkonen, K., Aalto, M. L., and Horsmanheimo, M. 1993. Immunohistochemical analysis of sensory nerves and neuropeptides and their contacts with mast cells in developing and mature psoriatic lesions. Arch. Dermatol. Res. 285:341–346.

    PubMed  Google Scholar 

  74. Johnson, D., Seeldrayers, P. A., and Weiner, H. L. 1988. The role of mast cells in demyelination. I. Myelin proteins are degraded by mast cells proteases and P2 can stimulate cell degranulation. Brain Res. 444:195–198.

    PubMed  Google Scholar 

  75. Padawer, J. 1968. Uptake of virus by mast cells. J. Reticuloend. Soc. 5:578–579.

    Google Scholar 

  76. Sugiyama, K. 1977. Histamine release from rat mast cells by Sendai virus. Nature 270:614–615.

    PubMed  Google Scholar 

  77. Dacey, R. G., and Bassett, J. E. 1987. Histaminergic vasodilation of intracerebral arterioles in the rat. J. Cerebr. Blood Flow Metab. 7:327–331.

    Google Scholar 

  78. Cacabelos, R. 1988. Alzheimer's disease: clinical and therapeutic alternatives. Med. Clin. 91:454–474.

    Google Scholar 

  79. Cacabelos, R., Yamatodani, A., Watanabe, T., Huriguchi, S., Nishimara, T., and Wada, H. 1984. Central actions of histamine. JANO Med. Hum. 638:62–85.

    Google Scholar 

  80. Cacabelos, R., Fernandez-Novoa, L., Perez-Trullen, J. M., Franco-Maside, A., and Alvarez, X. A. 1992. Serum histamine in Alzheimer's disease and multi-infarct dementia. Meth. Find. Exp. Clin. Pharmacol. 14:711–715.

    Google Scholar 

  81. Prell, G. D., Morrishow, A. M., Lee, W. S., and Newkirk, P. 1992. Drugs used in treatment of Alzheimer's disease inhibit methylation of histamine and promote its oxidation in brain. Agents & Actions 21:31–35.

    Google Scholar 

  82. Rodriguez, J., Moran, J.,Blanco, I., and Patel, A. J. 1989. Effect of histamine on the development of astroglial cells in culture. Neurochem. Res. 14:693–700.

    PubMed  Google Scholar 

  83. Hellstrand, K., Asea, A., and Hermondsson, S. 1990. Role of histamine in natural killer cell-mediated resistance against tumor cells. J. Immunol. 145:4365–4370.

    PubMed  Google Scholar 

  84. Fernandez-Novoa, L., Alvarez, X. A., Franco, A., and Cacabelos, R. 1993. Histamine-induced interleukin-1 changes in rat hypothalamus. Meth. Find. Exp. Clin. Pharmacol. 15:735–741.

    Google Scholar 

  85. Cacabelos, R., Alvarez, X. A., Franco, A., and Fernandez-Novoa, L. 1993. Dose- and time-dependent effects of histamine on hypothalamic levels of interleukin-1ß in rats. Agents and Actions, Spec. Conf. Issue: C260–262.

  86. Frim, D. M., Short, M. P., Rosenberg, W. S., Simpson, J., Breakefield, X. O., and Isacson, O. 1993. Local protective effects of nerve growth factor-secreting fibroblasts against excitotoxic lesions in the rat striatum. J. Neurosurg. 78:267–273.

    PubMed  Google Scholar 

  87. Friden, P. M., Walis, L. R., Watson, P., Doctrow, S. R., Kozarich, J. W., Backman, C., Bergman, H., Hoffer, B., Bloom, F., and Granholm, A. C. 1993. Blood-brain barrier penetration and in vivo activity of an NGF conjugate. Science 259:373–377.

    PubMed  Google Scholar 

  88. Johnston, H. B., and Atterwill, C. K. 1992. Nerve growth factor (NGF) receptors on mast cells: effects of the cholinergic neurotoxin ethylcholine mustard aziridinium ion (ECMA). Neurotoxicol. 13:153–160.

    Google Scholar 

  89. Iizuka, H., and Umeda, M. 1992. Different ability in PC12 clones to recover from MMC toxicity following NGF treatment. Brain Res. 599:1–5.

    PubMed  Google Scholar 

  90. Ali, S. F., LeBel, C. P., and Bondy, S. C. 1992. Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity. Neurotoxicol. 13:637–648.

    Google Scholar 

  91. LeBel, C. P., and Bondy, S. C. 1990. Sensitive and rapid quantitation of oxygen reactive species formation in rat synaptosomes. Neurochem. Int. 17:435–440.

    Google Scholar 

  92. Richter, C. 1993. Pro-oxidants and mitochondrial calcium: their relationship to apoptosis and oncogenesis. FEBS Lett. 325:104–107.

    PubMed  Google Scholar 

  93. Muller, T., Kuhn, L., and Przunek, H. 1993. Therapy with central active catechol-O-methyltransferase (COMT)-inhibitors: is addition of monoamine oxidase (MAO)-inhibitors necessary to slow progress of neurodegenerative disorders? J. Neural Trans., Gen Sect. 92:187–195.

    Google Scholar 

  94. Williams, K., Romano, C., Dichter, M. A., and Molinoff, P. B. 1991. Modulation of the NMDA receptor by polyamines. Life Sci. 48:469–498.

    PubMed  Google Scholar 

  95. Bueb, J. L., Mousli, M., and Landry, Y. 1991. Molecular basis for cellular effects of naturally occurring polyamines.Agents and Actions 33:84–86.

    PubMed  Google Scholar 

  96. Shaw, G. G. 1977. Evidence against the view that the central actions of polyamines are indirectly mediated. Biochem. Pharm. 26:1450–1451.

    PubMed  Google Scholar 

  97. Paton, W. D. M. 1951. Compound 48/80: a potent histamine liberator. Br. J. Pharmacol. 6:499–508.

    PubMed  Google Scholar 

  98. Read, G. W., and Kiefer, E. F. 1979. Benzalkonium chloride: selective inhibitor of histamine release induced by compound 48/80 and other polyamines. J. Pharm. Exp. Ther. 211:711–715.

    Google Scholar 

  99. Reynolds, I. J. 1990. Arcaine is a competitive antagonist of the polyamine site on the NMDA receptor. Eup. J. Pharm. 177:215–216.

    Google Scholar 

  100. Graham, D., Darles, G., and Langer, S. Z. 1992. The neuroprotective properties of ifenprodil, a novel NMDA receptor antagonist, in neuronal cell culture toxicity studies. Eup. J. Pharm. 226:373–376.

    Google Scholar 

  101. Doyle, K. M., and Shaw, G. G. 1994. The mechanism of the neurotoxic effects of spermidine. Biochem. Soc. Trans. 22:386S.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Robert Balázs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purcell, W.M., Atterwill, C.K. Mast cells in neuroimmune function: Neurotoxicological and neuropharmacological perspectives. Neurochem Res 20, 521–532 (1995). https://doi.org/10.1007/BF01694534

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01694534

Key Words

Navigation