Skip to main content
Log in

Oxidation of the intermetallics MoSi2 and TiSi2—A comparison

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behavior of two MoSi2 variants, one Mo-rich and one Si-rich, and TiSi2 was investigated between 1000 and 1400°C in air, oxygen and an 80/20-Ar/O2 mixture. A protective SiO2 scale develops on MoSi2 in all atmospheres in the temperature range investigated. The SiO2 modification changes around 1300°C from tridymite to cristobalite. This change in SiO2 modification seems to cause an enhanced formation of SiO2 and evaporation of MoO3. The SiO2 grows at the MoSi2-scale interface. In air a two-layer scale grows on TiSi2 between about 1000 and 1200°C with an inner inwards growing fine-grain mixture of SiO2 + TiO2 and an outer outward-growing TiO2 partial layer. TiN formation in the transient oxidation is responsible for the formation of the inner mixed partial layer because in N -free atmospheres a scale of a SiO2 matrix with some Ti oxide precipitates inside is formed. A one-layer scale structure similar as that in N-free atmosphere is found on TiSi2 in air at T > 1200°C. In oxygen the TiO2 precipitates grow as needles mostly oriented perpendicular to the surface. Due to the faster oxygen transport in TiO2 compared with SiO2, these TiO2 needles act as “oxygen pipes,” causing an enhanced oxidation of TiSi2 in front of these needles. The SiO2 scale dissolves about 1–2% TiO2. This doping causes a mixed oxygenand Si transport with the consequence that the SiO2 scale on TiSi2 grows partly by oxygen transport inwards and Si transport outwards. The SiO2 modification is cristobalite over the entire temperature range investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ryssel, inLexikon Elektronik und Mikroelektronik, Hrsg. von D. Sautter and H. Weinerth, eds., “Silicide” (Düsseldorf, 1990).

  2. D. Levy, J. P. Ponpon, A. Grob, and R. Stuck,Appl. Phys. A 38, 23 (1985).

    Google Scholar 

  3. B. L. Crowder and S. Zirinsky,IEEE J. Solid-State Circuits SC-14, 291–293 (1979).

    Google Scholar 

  4. S. P. Murarka, D. B. Fraser, A. K. Sinha, and H. J. Levinstein,IEEE J. Solid-State Circuits SC-15, 474–482 (1980).

    Google Scholar 

  5. S. P. Murarka,Thin Solid Films 140, 35 (1986).

    Google Scholar 

  6. S. Melsheimer, Oxidationsverhalten der Disilicide TiSi2 und MoSi2 als Struktur- und Beschichtungswerkstoffe bei hohen Temperaturen, Dissertation RWTH Aachen, 1996.

  7. R. W. Bartlett, P. R. Gage, and P. A. Larssen,Trans. Met. Soc. AIME 230, 1528 (1964).

    Google Scholar 

  8. V. E. Ivanov, E. P. Nechiporenko, V. I. Zmij, V. M. Krivoruchko, L. F. Verkho-robin, O. M. Aleksandrov, A. S. Mitrofanov, and N. S. Poltavtsev,Neorg. Mater. 1, 1354 (1965).

    Google Scholar 

  9. J. B. Berkowitz-Mattuck,Stability of Ceramic Materials at Temperatures to 2000°C, WADD Technical Report 60-377, Contract No. AF 33(616)-6154, Project No. 7350, 1960.

  10. J. B. Berkowitz-Mattuck and R. R. Dils,J. Electrochem. Soc. 112, 583 (1965).

    Google Scholar 

  11. R. W. Bartlett and P. R. Gage,Trans. Met. Soc. AIME 233, 968 (1965).

    Google Scholar 

  12. R. W. Bartlett, J. W. McCamont, and P. R. Gage,J. Am. Cer. Soc. 48, 551 (1965).

    Google Scholar 

  13. D. A. Berztiss, R. R. Cerchiara, E. A. Gulbransen, F. S. Pettit, and G. H. Meier,Mat. Sci. Eng. A 155, 165 (1992).

    Google Scholar 

  14. L. N. Lie, W. A. Tiller, and K. C. Saraswat,J. Appl. Phys. 56, 2127 (1984).

    Google Scholar 

  15. T. Mochizuki and M. Kashiwagi,J. Electrochem. Soc. 127, 1128 (1980).

    Google Scholar 

  16. Binary Alloy Phase Diagrams, 2nd ed., T. B. Massalski, ed. (Am. Soc. Metals, Metals Park, Ohio, 1990).

    Google Scholar 

  17. F. N. Schwettmann, R. A. Graff, and M. Kolodney,J. Electrochem. Soc. 118, 1973 (1971).

    Google Scholar 

  18. J. B. Berkowitz-Mattuck, P. E. Blackburn, and E. J. Felten,Trans. Met. Soc. AIME 233, 1093 (1965).

    Google Scholar 

  19. O. Rubisch,Ber. Dtsch. Keram. Ges. 41, 120 (1964).

    Google Scholar 

  20. A. F. Hollemann and E. Wiberg,Lehrbuch der Anorganischen Chemie (Walter de Gruyter, Berlin and New York, 1985), p. 752.

    Google Scholar 

  21. H. Schnabel,Zur Pulvermetallurgie des Molybdändisilizids, Dissertation TH, Karlsruhe, 1965.

  22. K. Reinmuth,Die Reaktionen hochschmelzender Silizide mit Stickstoff und Sauerstoff, Dissertation TH, Karlsruhe, 1968.

  23. E. Fitzer, K. Reinmuth, and H. Schnabel,Arch. Eisenhüttenw.40, 895. (1969).

    Google Scholar 

  24. K. L. Luthra,Oxid. Met. 36, 475 (1991).

    Google Scholar 

  25. A. Rahmel and P. J. Spencer,Oxid. Met. 35, 53 (1991).

    Google Scholar 

  26. R. C. DeVries, R. Roy, and E. F. Osborn,Trans. Br. Cer. Soc. 53, 525 (1954).

    Google Scholar 

  27. A. G. Revesz,Phys. Stat. Sol. 57, 235, 657 (1980).

    Google Scholar 

  28. G. R. Blair, H. Levin, and R. E. O'Brien,J. Am. Cer. Soc. 48, 430 (1965).

    Google Scholar 

  29. The Si-SiO 2 System, P. Balk, ed., Materials Science Monographs32 (Elsevier, New York, 1988).

    Google Scholar 

  30. The Physics and Chemistry of SiO 2 and the Si-SiO 2 Interface, C. R. Helms and B. E. Deal, eds. (Plenum Press, New York, 1988).

    Google Scholar 

  31. E. A. Irene,CRC Crit. Rev. Solid State Mater. Sci. 14, 175 (1988).

    Google Scholar 

  32. E. Fitzer, J. Schlichting, and F. K. Schmidt,High-Temp. High Pres. 2, 553 (1970).

    Google Scholar 

  33. S. Becker, A. Rahmel, and M. Schütze,Solid State Ionics 53-56, 280 (1992).

    Google Scholar 

  34. K. P. Wild,Das Zunderverhalten der Disilizide der Metalle der 4., 5. und 6. Nebengruppe und ihrer Mischsysteme, Dissertation Universität Karlsruhe, 1973.

  35. R. Roy, R. C. DeVries, D. E. Rase, M. W. Shafer, and E. F. Osborn, inPhase Diagrams for Ceramists, E. M. Levin, C. R. Robbins, and H. F. McMurdie, eds. (The Am. Cer. Soc., Columbus, Ohio, 1964), Fig. 115, p. 69.

    Google Scholar 

  36. E. Fitzer, inWarmfeste und korrosionsbeständige Sinterwerkstoffe. 2. Plansee-Seminar, Reutte/Tirol, F. Benesovsky, ed. (Berlin, 1955), pp. 56–79.

  37. C. D. Wirkus,J. Am. Cer. Soc. 49, 173 (1966).

    Google Scholar 

  38. P. I. Glushko, G. I. Postogvard, N. S. Pugachev, S. F. Dudnik, and V. P. Podtykan,Prot. Met. 13, 187 (1977).

    Google Scholar 

  39. J. Schlichting and S. Hoffmann,High Temp.-High Pres. 10, 349 (1978).

    Google Scholar 

  40. P. Meschter,Met. Trans. 23A, 1763 (1992).

    Google Scholar 

  41. R. W. Bartlettet al., Investigation of Mechanisms for Oxidation Protection and Failure of Intermetallic Coatings für Refractory Metals. Part I. Molybdenum Disilicide, Technical Documentary Report No. ADF-TDR-63-753, Part 1, Contract No. AF 33(657)-9170, June 1963.

  42. C. E. Ramberg, P. Beatrice, K. Kurokawa, and W. L. Worrell,Mat. Res. Soc. Proc. 322, 243 (1994).

    Google Scholar 

  43. R. Beyers,J. Appl. Phys. 56, 147 (1984).

    Google Scholar 

  44. R. Beyers, R. Sinclair, and M. E. Thomas,Proc. Symp. High Temperature Materials Chemistry III Z. A. Munir and D. Cubicciotti, eds. (The Electrochemical Society, Pennington, NJ, 1986), pp. 1–3.

    Google Scholar 

  45. J. C. Schuster and H. Nowotny,Proc. 11th Int. Plansee Semin. 1 (1985), 889–911.

    Google Scholar 

  46. R. Beyers, R. Sinclair, and M. E. Thomas,J. Vac. Sci. Technol. B 2, 781 (1984).

    Google Scholar 

  47. S. Sambasivan and W. T. Petuskey,J. Mater. Res. 9, 2362 (1994).

    Google Scholar 

  48. W. J. J. Wakelkamp,Diffusion and Phase Relations in the System Ti-Si-C and Ti-Si-N, Dissertation, Eindhofen University of Technology, 1991.

  49. H. J. Seifert,Thermodynamik und Phasengleichgewichte im System Ti-Si-C-N, Dissertation, Universität Stuttgart, 1993.

  50. C. Sarioglu,Oxidation Behavior of MoSi 2 and MoSi 2-Based Composites at 500–1200°C, MS thesis, University of Pittsburgh, 1993.

  51. P. J. Meschter,Met. Trans. 23A, 1763 (1992).

    Google Scholar 

  52. H. J. Grabke and G. H. Meier,Oxid. Met. 44, 147 (1995).

    Google Scholar 

  53. I. I. Kornilov and V. V. Glasova,Interaction of Refractory Transition Metals with Oxygen, (“Nauka,” Moskau, 1967).

    Google Scholar 

  54. R. Hörbe, O. Knacke, and K. E. Prescher,Erzmetall 14, 232 (1961).

    Google Scholar 

  55. E. P. EerNisse,Appl. Phys. Lett. 30, 290 (1977).

    Google Scholar 

  56. N. Birks and F. S. Pettit,Mat. Sci. Eng. A 143, 187 (1991).

    Google Scholar 

  57. J. Schlichting,Glastechn. Ber. 51, 21 (1978).

    Google Scholar 

  58. E. Fitzer and O. Rubisch,Elektrowärme 16, 163 (1958).

    Google Scholar 

  59. J. K. Srivastava, M. Prasad, and J. B. Wagner, Jr.,J. Electrochem. Soc. 132, 955 (1985).

    Google Scholar 

  60. H. A. Schaeffer, inEncyclopedia of Materials Science and Engineering, M. B. Bever, ed. (Pergamon Press, Oxford, 1986), p. 4393.

    Google Scholar 

  61. P. Kofstad,Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides (New York, 1972).

  62. P. Kofstad,High Temperature Corrosion (New York, 1988).

  63. S. Melsheimer, A. Rahmel, and M. Schütze,Oxid. Met., to be published.

  64. W. J. Quadakkers, A. Elschner, H. Holsbrecher, K. Schmidt, W. Speier, and H. Nickel,Mikrochimica Acta 107, 197 (1992).

    Google Scholar 

  65. J. Jedlinski, M. J. Graham, G. I. Sproule, D. F. Mitchell, G. Borchardt, and A. Bernasik,Werkst. Korros. 46, 297 (1995).

    Google Scholar 

  66. N. S. Choudhury, H. C. Graham, and J. Hinze, inProperties of High Temperature Alloys, Z. A. Foroulis and F. S. Pettit, eds. (The Electrochem. Soc. 1976), p. 668.

  67. C. Lang and M. Schütze,Oxid. Met.,46, 255 (1996).

    Google Scholar 

  68. S. Becker, A. Rahmel, M. Schorr, and M. Schütze,Oxid. Met. 38, 425 (1992).

    Google Scholar 

  69. H. Fietzek, Untersuchung der Hochtemperaturkorrosion von Titandisilicid mittels zeit- und t temperaturaufgelöster Röntgendiffraktometrie, Diplomarbeit Fachhochschule Karlsruhe, 1994.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melsheimer, S., Fietzek, M., Kolarik, V. et al. Oxidation of the intermetallics MoSi2 and TiSi2—A comparison. Oxid Met 47, 139–203 (1997). https://doi.org/10.1007/BF01682375

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01682375

Key words

Navigation