Skip to main content
Log in

Immunocytochemical and electrophoretic analyses of changes in myosin gene expression in cat limb fast and slow muscles during postnatal development

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Changes in myosin synthesis during the postnatal development of the fast extensor digitorum longus (EDL) and the slow soleus muscles of the kitten were examined using immunocytochemical techniques supplemented by pyrophosphate gel electrophoresis and gel electrophoresis-derived enzyme linked immunosorbent assay (GEDELISA) of myosin isoforms. The antibodies used were monoclonals against heavy chains of slow and fast myosins and a polyclonal against foetal/embryonic myosin. In both muscles in the newborn kitten, there was a population of more mature fibres which stained strongly for slow but weakly for foetal/embryonic myosin. These fibres were considered to be primary fibres. They formed 4.8% of EDL fibres and 26% of soleus fibres at birth, and continued to express slow myosin in adult muscles. The less mature secondary fibres stained strongly for foetal/embryonic myosin, and these could be divided into two subpopulations; fast secondaries in which foetal/embryonic myosin was replaced by fast myosin, and slow secondaries in which the myosin was replaced by slow myosin. At 50 days the EDL had a large population of fast secondaries (83% of total fibres) and a small population of slow secondaries which gradually transformed into fast fibres with maturity. The vast majority of secondary fibres in the soleus were slow secondaries, in which slow myosin synthesis persisted in adult life. There was a restricted zone of fast secondaries in the soleus, and these gradually transformed into slow fibres in adult life. It is proposed that the emergence of primary fibres and the two populations of secondary fibres is myogenically determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashmore, C. R., Robinson, D. W., Rattray, P. &Doerr, L. (1972) Biphasic development of muscle fibres in the foetal lamb.Expl Neurol. 37, 241–255.

    Google Scholar 

  • Bagust, J., Lewis, D. M. &Westerman, R. A. (1973) Polyneural innervation of kitten skeletal muscle,J. Physiol. (Lond.) 229, 241–255.

    Google Scholar 

  • Bárány, M. (1967) ATPase activity of myosin correlated with speed of muscle shortening.J. Gen. Physiol. 50, 197–218.

    PubMed  Google Scholar 

  • Bárány, M. &Close, I. (1971) The transformation of myosin in cross-innervated rat muscles.J. Physiol. (Lond.) 213, 455–474.

    Google Scholar 

  • Brooke, M. H. &Kaiser, K. K. (1969) Some comments on the histochemical characterization of muscle adenosine triphosphatase.J. Histochem. Cytochem. 17, 431–432.

    PubMed  Google Scholar 

  • Brooke, M. H. &Kaiser, K. K. (1970) Three ‘myosin adenosine triphosphatase’ systems: the nature of their pH liability and sulfhydryl dependence.J. Histochem. Cytochem. 18, 670–672.

    PubMed  Google Scholar 

  • Brooke, M. H., Williamson, E. &Kaiser, K. K. (1971) The behaviour of four fibre types in developing and reinnervated muscle.Arch. Neurol. 25, 360–366.

    PubMed  Google Scholar 

  • Buller, A. J., Eccles, J. C. &Eccles, R. M. (1960a) Differentiation of fast and slow muscles in the cat hindlimb.J. Physiol. (Lond.) 150, 399–416.

    Google Scholar 

  • Buller A. J., Eccles, J. C. &Eccles, R. M. (1960b) Interactions between motoneurones and muscles in respect of the characteristic speeds of their responses.J. Physiol (Lond.) 150, 417–439.

    Google Scholar 

  • Burke, R. E. &Tsairis, P. (1974) The correlation of physiological properties with histochemical characteristics in single muscle units.Ann. N. Y. Acad. Sci. 228, 145–158.

    PubMed  Google Scholar 

  • Butler-Browne, G. S., Bugaisky, L. B., Cuenoud, S., Schwartz, K. &Whalen, R. G. (1982) Denervation of newborn rat muscles does not block the appearance of adult fast myosin heavy chain.Nature (Lond.) 299, 830–833.

    Google Scholar 

  • Butler-Browne, G. S. &Whalen, R. G. (1984) Myosin transitions occurring during postnatal development of the rat soleus muscle.Devl. Biol. 102, 324–334.

    Google Scholar 

  • Close. R. (1964) Dynamic properties of fast and slow skeletal muscles of the rat during development.J. Physiol. (Lond.) 173, 74–95.

    Google Scholar 

  • Close, R. &Hoh, J. F. Y. (1967) Force:velocity properties of kitten muscles.J. Physiol. (Lond.) 192, 815–822.

    Google Scholar 

  • Crow, M. T. &Stockdale, F. E. (1986) Myosin expression and specialization among the earliest muscle fibres of the developing avian limb.Devl. Biol. 113, 238–254.

    Google Scholar 

  • D'Albis, A., Janmot, C. &Bechet, J-J. (1985) Myosin switches in skeletal muscle development of an urodelan amphibian,Pleurodeles waltli. Comparison with a mammalian, Mus musculus.Biochem. Biophys. Res. Commun. 128, 94–100.

    PubMed  Google Scholar 

  • Davies, A. (1972) Postnatal changes in the histochemical fibre types of porcine skeletal muscle.J. Anat. 113, 213–240.

    PubMed  Google Scholar 

  • Dhoot, G. K. (1986) Selective synthesis and degradation of slow skeletal myosin heavy chains in developing muscle fibres.Muscle Nerve 9, 155–164.

    PubMed  Google Scholar 

  • Draeger, A., Weeds, A. G. &Fitzsimons, R. B. (1987) Primary, secondary and tertiary myotubes in developing skeletal muscle: a new approach to the analysis of human myogenesis.J. Neurol. Sci. 81, 19–43.

    PubMed  Google Scholar 

  • Dubowitz, V. (1965) Enzyme histochemistry of skeletal muscle.J. Neurol. Nerosurg. Psychiat. 28, 516–524.

    Google Scholar 

  • Eccles, J. C., Eccles, R. M. &Lundberg, A. (1958) The action potentials of the alpha motoneurones supplying fast and slow muscles.J. Physiol. (Lond.) 142, 275–291.

    Google Scholar 

  • Fitzsimons, R. B. &Hoh, J. F. Y. (1981) Embryonic and foetal myosins in human skeletal muscle.J. Neurol. Sci. 52, 367–384.

    PubMed  Google Scholar 

  • Gallego, R., Huizar, P., Kudo, N. &Kuno, M. (1978) Disparity of motoneurone and muscle differentiation following spinal transection in the kitten.J. Physiol. (Lond.) 281, 253–265.

    Google Scholar 

  • Gauthier, G. F., Lowey, S. &Hobbs, A. W. (1978) Fast and slow myosin in developing muscle fibres.Nature (Lond.) 274, 25–29.

    Google Scholar 

  • Harris, A. J. (1981) Embryonic growth and innervation of rat skeletal muscles. I. Neural regulation of muscle fibre numbers.Philos. Trans. Roy. Soc. B 293, 257–277.

    Google Scholar 

  • Haslasz, P. &Martin, P. R. (1984) A microcomputer based system for semi-automatic analysis of histological sections.Proc. Roy. Micr. Soc. 19, 312P.

  • Hennig, R. &Lømo, T. (1984) Firing patterns of motor units in normal rats.Nature (Lond.) 314, 164–166.

    Google Scholar 

  • Hoh, J. F. Y. (1978) Light chain distribution of chicken skeletal muscle myosin isoenzymes.FEBS Lett. 90, 297–300.

    PubMed  Google Scholar 

  • Hoh, J. F. Y. &Hughes, S. (1988) Myogenic and neurogenic regulation of myosin gene expression in cat jaw-closing muscles regenerating in fast and slow limb muscle beds.J. Musc. Res. Cell Motility 9, 59–72.

    Google Scholar 

  • Hoh, J. F. Y., Hughes, S., Chow, C., Hale, P. T. &Fitzsimons, R. B. (1988) Immunocytochemical and electrophoretic analyses of changes in myosin gene expression in cat posterior temporalis muscle during postnatal development.J. Musc. Res. Cell Motility 9, 48–58.

    Google Scholar 

  • Hoh, J. F. Y., Kwan, B. T. S., Dunlop, C. &Kim, B. H. (1980) Effects of nerve cross-union and cordotomy on myosin isoenzymes in fast-twitch and slow-twitch muscles of the rat. InPlasticity of Muscle (edited byPette, D.), pp. 339–352. Berlin. New York: Walter de Gruyter & Co.

    Google Scholar 

  • Hoh, J. F. Y., Mcgrath, P. A. &White, R. I. (1976) Electrophoretic analysis of mutiple forms of myosin in fast-twitch and slow-twitch muscles of the chick.Biochem. J. 157, 87–95.

    PubMed  Google Scholar 

  • Hoh, J. F. Y. &Yeoh, G. P. S. (1979) Rabbit skeletal myosin isoenzymes from foetal, fast-twitch and slow-twitch muscles.Nature (Lond.) 280, 321–323.

    Google Scholar 

  • Hoh, J. F. Y., Yeoh, G. P. S., Thomas, M. A. W. &Higginbottom, L. (1979) Structural differences in the heavy chains of rat ventricular myosin isoenzymes.FEBS Lett. 97, 330–334.

    PubMed  Google Scholar 

  • Howald, H. (1982) Training-induced morphological and functional changes in skeletal muscle.Int. J. Sports Med. 3, 1–12.

    Google Scholar 

  • Hugh, G. &Hoh, J. F. Y. (1987) Immunocytochemical analysis of myosin isoenzymes in denervated rat fast and slow muscles.Proc. Aust. Physiol. Pharm. Soc. 18, 45P.

    Google Scholar 

  • Hughes, S. &Hoh, J. F. Y. (1985) Myotubes grown in tissue culture from juvenile cat jaw and limb muscles express a slow myosin epitope.Proc. Aust. Physiol. Pharm. Soc. 16, 260P.

    Google Scholar 

  • Jolesz, F. &Sréter, F. A. (1981) Development, innervation, and activity-pattern induced changes in skeletal muscle.Ann. Rev. Physiol. 43, 531–552.

    Google Scholar 

  • Jones, S. P., Ridge, R. M. A. P. &Rowlerson, A. (1987a) The non-selective innervation of muscle fibres and mixed composition of motor units in a muscle of neonatal rat.J. Physiol (Lond.) 386, 377–394.

    Google Scholar 

  • Jones, S. P., Ridge, R. M. A. P. &Rowlerson, A. (1987b) Rat muscle during post-natal development: evidence in favour of no interconversion between fast-and slow-twitch fibres.J. Physiol (Lond.) 386, 395–406.

    Google Scholar 

  • Karpati, G. &Engel, W. K. (1967) Neuronal trophic function.Arch. Neurol. 17, 542–545.

    PubMed  Google Scholar 

  • Kelly, A. M. &Zacks, S. I. (1969) The histogenesis of rat intercostal muscle.J. Cell Biol. 42, 135–153.

    PubMed  Google Scholar 

  • Kugelberg, E. (1976) Adaptive transformation of rat soleus motor units during growth.J. Neurol. Sci. 27, 269–289.

    PubMed  Google Scholar 

  • Lowey, S. (1985) Myosin isozymes in developing chicken muscle.Advances in Experimental Med. & Biol. 182, 269–280.

    Google Scholar 

  • Lutz, H., Ermini, M., Jenny, E., Bruggmann, S., Joris, F. &Weber, E. (1978) The size of the fibre populations in rabbit skeletal muscles as revealed by indirect immunofluorescence with anti-myosin sera.Histochemistry 57, 223–235.

    PubMed  Google Scholar 

  • Lyons, G. E., Haselgrove, J., Kelly, A. M. &Rubinstein, N. A. (1983) Myosin transitions in developing fast and slow muscles of the rat hindlimb.Differentiation 25, 168–175.

    PubMed  Google Scholar 

  • Maier, A. &Eldred, E. (1974) Postnatal growth of the extra-and intrafusal fibres in the soleus and medial gastrocnemius muscles of the cat.Amer. J. Anat. 141, 161–177.

    PubMed  Google Scholar 

  • Maxwell, L. C., Barclay, J. K., Mohrman, D. E. &Faulkner, J. A. (1977) Physiological characteristics of skeletal muscles of dogs and cats.Amer. J. Physiol. 233, C14-C18.

    PubMed  Google Scholar 

  • Mclennan, I. S. (1983) Neural dependence and independence of myotube production in chicken hindlimb muscles.Devl. Biol. 98, 287–294.

    Google Scholar 

  • Miller, J. B. &Stockdale, F. E. (1986) Developmental origins of skeletal muscle fibres: clonal analysis of myogenic cell lineages based on expression of fast and slow myosin heavy chains.Proc. Nat. Acad. Sci. (Wash.) 83, 3860–3864

    Google Scholar 

  • Narusawa, M., Fitzsimons, R. B., Izumo, S., Nadal-Ginard, B., Rubinstein, N. A. &Kelly, A. M. (1987) Slow myosin in developing rat skeletal muscle.J. Cell Biol. 104, 447–459.

    PubMed  Google Scholar 

  • Navarrete, R. &Vrbová, G. (1983) Changes in activity patterns in slow and fast muscles during postnatal development.Dev. Brain Res. 8, 11–19.

    Google Scholar 

  • Nystrom, B. (1968) Histochemistry of developing cat muscles.Acta Neurologica Scand. 44, 405–439.

    Google Scholar 

  • Periasamy, M., Wieczorek, D. F. &Nadal-Ginard, B. (1984) Characterization of developmentally regulated perinatal myosin heavy-chain gene expressed in skeletal muscle.J. Biol. Chem. 259, 13573–13578.

    PubMed  Google Scholar 

  • Periasamy, M., Wydro, R. M., Strehler-Page, A-M., Strehler, E. E. &Nadal-Ginard, B. (1985) Characterization of cDNA and genomic sequences corresponding to an embryonic myosin heavy chain.J. Biol. Chem. 260, 15856–15862.

    PubMed  Google Scholar 

  • Pette, D. &Vrbová, G. (1985) Invited review: neural control of phenotypic expression in mammalian muscle fibres.Muscle Nerve 8, 676–689.

    PubMed  Google Scholar 

  • Phillips, W. D. &Bennett, M. R. (1984) Differentiation of fibre types in wing muscles during embryonic development: effect of neural tube removal.Devl. Biol. 106, 457–468.

    Google Scholar 

  • Redfern, P. A.(1970) Neuromuscular transmission in new-born rats.J. Physiol. (Lond.) 209. 701–709.

    Google Scholar 

  • Rossmanith, G. H., Hoh, J. F. Y., Kirman, A. &Kwan, L. J. (1986) Influence of V1 and V3 isomyosins on the mechanical behaviour of rat papillary muscle as studied by pseudo-random binary noise modulated length perturbations.J. Musc. Res. Cell Motility 7, 307–319.

    Google Scholar 

  • Rowlerson, A. (1979) Differentiation of muscle fibre types in foetal and young rats studied with a labelled antibody to slow myosin.J. Physiol. (Lond.) 301, 19P.

    Google Scholar 

  • Rubinstein, N. A. &Kelly, A. M. (1981) Development of muscle fibre specialization in the rat hindlimb.J. Cell Biol. 90, 128–144.

    PubMed  Google Scholar 

  • Salviati, G., Biasia, E. &Aloisi, M. (1986) Synthesis of fast myosin induced by fast ectopic innervation of rat soleus muscle is restricted to the ectopic endplate region.Nature (Lond.) 322, 637–639.

    Google Scholar 

  • Swynghedauw, B. (1986) Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles.Physiol. Rev. 66, 710–771.

    PubMed  Google Scholar 

  • Syrovy, I. &Gutmann, E. (1977) Differentiation of myosin in soleus and extensor digitorum longus muscle in different animal species during development.Pflügers Arch. 369, 85–89.

    Google Scholar 

  • Thompson, W. J., Sutton, L. A. &Riley, D. A. (1984) Fibre type composition of single motor units during synapse elimination in neonatal rat soleus muscle.Nature (Lond.) 309, 709–711.

    Google Scholar 

  • Thornell, L.-E., Billeter, R., Butler-Browne, G. S., Eriksson, P.-O., Ringqvist, M. &Whalen, R. G. (1984) Development of fibre types in human foetal muscle.J. Neurol. Sci. 66, 107–115.

    PubMed  Google Scholar 

  • Tomanek, R. J. (1975) A histochemical study of postnatal differentiation of skeletal muscle with reference to functional overload.Devl. Biol. 42, 305–314.

    Google Scholar 

  • Weydert, A., Barton, P., Harris, A. J., Pinset, C. &Buckingham, M. (1987) Developmental pattern of mouse skeletal myosin heavy chain gene transcriptsin vivo andin vitro.Cell 49, 121–129.

    PubMed  Google Scholar 

  • Whalen, R. G., Sell, S. M., Butler-Browne, G. S., Schwartz, K., Bouveret, P. &Pinset-Harstrom, I. (1981) Three myosin heavy-chain isozymes appear sequentially in rat muscle development.Nature (Lond.) 292, 805–809.

    Google Scholar 

  • White, N. K., Bonner, P. H., Nelson, D. R. &Hauschka, S. D. (1975) Clonal analysis of vertebrate myogenesis. IV. Medium-dependent classification of colony forming cells.Devl. Biol. 44, 346–361.

    Google Scholar 

  • Young, R. B., Moriarity, D. M. &Mcgee, C. E. (1986) Structural analysis of myosin genes using recombinant DNA techniques.J. Anim. Sci. 63, 259–268.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoh, J.F.Y., Hughes, S., Hale, P.T. et al. Immunocytochemical and electrophoretic analyses of changes in myosin gene expression in cat limb fast and slow muscles during postnatal development. J Muscle Res Cell Motil 9, 30–47 (1988). https://doi.org/10.1007/BF01682146

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01682146

Keywords

Navigation