Skip to main content
Log in

Phenotypic and developmental analysis of mutations at thecrumbs locus, a gene required for the development of epithelia inDrosophila melanogaster

  • Published:
Roux's archives of developmental biology Aims and scope Submit manuscript

Summary

The genecrumbs (crb) ofDrosophila melanogaster provides an essential function for the embryonic development of ectodermally derived epithelia. Complete loss of function alleles of thecrb gene are recessive embryonic lethals and lead to a disorganization of the primordia of these epithelia, followed by cell death in some tissues. Incrb mutant embryos, different organs are affected to a different extent. Some tissues die almost completely (as the epidermis, the atrium and the pharynx) while others partially survive and conserve their basic epithelial structure (as the tracheal system, the oesophagus, the proventriculus, the salivary glands, the hindgut and the Malpighian tubules). Degeneration is first visible at stage 11 and continues successively throughout development. There is evidence that the loss of epithelial cell polarity may be the cause for the degeneration of these tissues, suggesting that thecrb gene product is involved in stabilizing the apico-basal polarity of epithelial cells. As previously shown, thecrb protein is specifically expressed on the apical side of embryonic epithelia in a reticular pattern outlining the borders of the cells. Here we demonstrate that thecrb protein shows the same subcellular localization in epithelial cells of imaginal discs and in follicle cells, indicating a similar function ofcrb during the development of embryonic, imaginal and follicle epithelia. Clonal analysis experiments indicate that the genecrb is not cell-autonomous in its expression, suggesting that the gene product may act as a diffusible factor and may serve as a signal in a cell-cell communication process. This signal is thought to be required for the formation and/or maintenance of the cell and tissue structure of the respective epithelia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akam M (1987) The molecular basis for metameric pattern in theDrosophila embryo. Development 101:1–22

    Google Scholar 

  • Anderson KV (1987) Dorsal-ventral embryonic pattern genes ofDrosophila. TIG 3:91–97

    Google Scholar 

  • Becker HJ (1957) Über Röntgenmosaikflecken und Defektmutationen im Auge vonDrosophila und die Entwicklungsphysiologie des Auges. Zeitschrift für indukt. Abstammungs- und Vererbungslehre 88:333–373

    Google Scholar 

  • Becker HJ (1976) Mitotic Recombination. In: Ashburner M, Wright TRF (eds) The genetics and biology ofDrosophila, vol 1c. Academic Press, New York, pp 1020–1089

    Google Scholar 

  • Bier E, Vässin H, Shepherd S, Lee K, McCall K, Barbel S, Ackerman L, Carretto R, Uemura T, Grell E, Jan LY, Jan YN (1989) Searching for pattern and mutations in theDrosophila genome with a P-lacZ vector. Gen Dev 3:1273–1287

    Google Scholar 

  • Campos-Ortega JA, Hartenstein V (1985) The embryonic development ofDrosophila melanogaster. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Demerec M (Ed.) (1950) Biology ofDrosophila. John Wiley & Sons Inc, New York

    Google Scholar 

  • Doolittle RF, Feng DF, Johnson MS (1984) Computer-based characterization of epidermal growth factor precursor. Nature 307:558–560

    PubMed  Google Scholar 

  • Dura JM, Randsholt NB, Deatrick J, Erk I, Santamaria P, Freeman JD, Freeman SJ, Weddell D, Brock HW (1987) A complex genetic locus,polyhomeotic, is required for segmental specification and epidermal development inD. melanogaster. Cell 51:829–839

    Google Scholar 

  • Ekblom P (1989) Developmentally regulated conversion of mesenchym to epithelium. The FASEB J 3:2141 2150

    Google Scholar 

  • Elkins T, Zinn K, McAllister L, Hoffmann FM, Goodman CS (1990) Genetic analysis of aDrosophila neural cell adhesion molecule: Interaction of fasciclin I and Abelson tyrosine kinase mutations. Cell 60:565–575

    PubMed  Google Scholar 

  • Fleming TP, Johnson MH (1988) From egg to epithelium. Ann Rev Cell Biol 4:459–485

    PubMed  Google Scholar 

  • Foe VE (1989) Mitotic domains reveal early commitment of cells inDrosophila embryos. Development 107:1–22

    Google Scholar 

  • Fujita SJ, Zipursky SL, Benzer S, Ferrus A, Shotwell SL (1982) Monoclonal antibodies against theDrosophila nervous system. Proc Natl Acad Sci USA 79:7929–7933

    PubMed  Google Scholar 

  • Garcia-Bellido A, Merriam JR (1971) Genetic analysis of cell heredity in imaginal discs ofDrosophila melanogaster. Proc Natl Acad Sci USA 68:2222–2226

    PubMed  Google Scholar 

  • Ghysen A, O'Kane C (1989) Neural enhancer-like elements are specific cell markers inDrosophila. Development 105:35–52

    PubMed  Google Scholar 

  • Gray A, Dull TJ, Ullrich A (1983) The nucleotide sequence of epidermal growth factor cDNA predicts a 128000 molecular weight precursor. Nature 303:722–725

    PubMed  Google Scholar 

  • Hartenstein V (1987) The influence of segmental compartmentalisation on the development of the larval peripheral nervous system inDrosophila melanogaster. Roux's Arch Dev Biol 196:101–112

    Google Scholar 

  • Hartenstein V (1988) Development ofDrosophila larval sensory organs: spatiotemporal pattern of sensory neurones, peripheral axonal pathways and sensilla differentiation. Development 102:869–886

    Google Scholar 

  • Ingham PW (1988) The molecular genetics of embryonic pattern formation inDrosophila. Nature 335:25–34

    PubMed  Google Scholar 

  • Jan LY, Jan YN (1982) Antibodies to horseradish peroxidase as specific neuronal markers inDrosophila and in grasshopper embryos. Proc Natl Acad Sci USA 72:2700–2704

    Google Scholar 

  • Jürgens G, Wieschaus E, Nüsslein-Volhard C, Kluding H (1984) Mutations affecting the pattern of larval cuticle inDrosophila melanogaster. II. Zygotic loci on the third chromosome. Roux's Arch Dev Biol 193:283–295

    Google Scholar 

  • King RC (1970) Ovarian development inDrosophila melanogaster. Academic Press, New York London San Francisco

    Google Scholar 

  • Klein G, Langegger M, Timpl R, Ekblom P (1988) Role of laminin A chain in the development of epithelial cell polarity. Cell 55:331–341

    PubMed  Google Scholar 

  • Klingensmith J, Noll E, Perrimon N (1989) The segment polarity phenotype ofDrosophila involves differential tendencies toward transformation and cell death. Dev Biol 134:130–145

    PubMed  Google Scholar 

  • Knust E, Dietrich U, Tepaß U, Bremer KA, Weigel D, Vässin H, Campos-Ortega JA (1987a) EGF homologous sequences encoded in the genome ofDrosophila melanogaster, and their relation to neurogenic genes. EMBO J 6:761–766

    PubMed  Google Scholar 

  • Knust E, Bremer KA, Vässin H, Ziemer A, Tepaß U, Campos-Ortega JA (1987b) TheEnhancer of split locus and neurogenesis inDrosophila melanogaster. Dev Biol 122:262–273

    PubMed  Google Scholar 

  • Lehmann R, Nüsslein-Volhard C (1987)hunchback, a gene required for segmentation of the anterior and posterior region of theDrosophila embryo. Dev Biol 119:402–417

    PubMed  Google Scholar 

  • Lewis EB (1978) A gene complex controlling segmentation inDrosophila. Nature 276:565–570

    PubMed  Google Scholar 

  • Lindsley DL, Grell EH (1968) Genetic variations ofDrosophila melanogaster. Carnegie Inst Publ no 627, Washington DC

  • Lindsley DL, Zimm G (1985) The genome ofDrosophila melanogaster. Drosophila Inform Serv 62

  • Lindsley DL, Zimm G (1990) The genome ofDrosophila melanogaster. Drosophila Inform Serv 68

  • Livneh E, Glaser L, Segal D, Schlessinger J, Shilo BZ (1985) TheDrosophila EGF receptor homolog: conservation of both hormone binding and kinase domain. Cell 40:599–607

    PubMed  Google Scholar 

  • Madhaven MM, Schneiderman HA (1977) Histological analysis of the dynamics of growth of imaginal discs and histoblast nests during the larval development ofDrosophila melanogaster. Roux's Arch Dev Biol 183:269–305

    Google Scholar 

  • Magrassi L, Lawrence PA (1988) The pattern of cell death infushi tarazu, a segmentation gene ofDrosophila. Development 104:447–451

    PubMed  Google Scholar 

  • Martinez-Arias A (1985) The development offused-embryos ofDrosophila melanogaster. J Embryol Exp Morphol 87:99–114

    PubMed  Google Scholar 

  • Martinez-Arias A (1989) A cellular basis for pattern formation in the insect epidermis. TIG 5:262–267

    PubMed  Google Scholar 

  • Nüsslein-Volhard C, Frohnhöfer HG, Lehmann R (1987) Determination of anteroposterior polarity inDrosophila. Science 238:1675–1681

    PubMed  Google Scholar 

  • Perrimon N, Gans M (1983) Clonal analysis of the tissue specificity of recessive female-sterile mutations ofDrosophila melanogaster using a dominant female-sterile mutationFs(1) K1237. Dev Biol 100:365–373

    PubMed  Google Scholar 

  • Poodry CA (1980) Epidermis: Morphology and Development. In: Ashburner M, Wright TRF (eds) The genetics and biology of Drosophila, vol 2d. Academic Press, New York, pp 443–498

    Google Scholar 

  • Price JV, Clifford RJ, Schüpbach T (1989) The maternal ventralizing locustorpedo is allelic tofaint little ball, an embryonic lethal, and encodes theDrosophila EGF receptor homolog. Cell 56:1085–1092

    PubMed  Google Scholar 

  • Riggelman B, Wieschaus E, Scheld P (1989) Molecular analysis of thearmadillo locus: uniformly distributed transcripts and a protein with novel internal repeats are associated with aDrosophila segment polarity gene. Gen Dev 3:96–113

    Google Scholar 

  • Rodriguez-Boulan E, Nelson WJ (1989) Morphogenesis of the polarized epithelial cell phenotype. Science 245:718–725

    PubMed  Google Scholar 

  • Scheijter ED, Shilo B-Z (1989) TheDrosophila EGF receptor homolog (DER) gene is allelic tofaint little ball, a locus essential for embryonic development. Cell 56:1093–1104

    PubMed  Google Scholar 

  • Schüpbach T (1987) Germ line and soma cooperate during oogenesis to establish the dorsoventral pattern of egg shell and embryo inDrosophila melanogaster. Cell 49:699–707

    PubMed  Google Scholar 

  • Scott J, Urdea M, Quiroga M, Sanchez-Pescador R, Fong N, Selby M, Rutter WJ, Bell GI (1983) Structure of a mouse submaxillary messenger RNA encoding epidermal growth factor and seven related proteins. Science 221:236–240

    PubMed  Google Scholar 

  • Simons K, Fuller SD (1985) Cell surface polarity in epithelia. Ann Rev Cell Biol 1:243–288

    PubMed  Google Scholar 

  • Smouse D, Goodman C, Mahowald A, Perrimon N (1988)polyhomeotic: a gene required for the embryonic development of axon pathways in the central nervous system ofDrosophila. Gen Dev 2:830–842

    Google Scholar 

  • Smouse D, Perrimon N (1990) Genetic dissection of a complex neurological mutant,polyhomeotic, inDrosophila. Dev Biol 139:169–185

    PubMed  Google Scholar 

  • Szabad J, Schüpbach T, Wieschaus E (1979) Cell lineage and development in the larval epidermis ofDrosophila melanogaster. Dev Biol 73:256–271

    PubMed  Google Scholar 

  • Tearle R, Nüsslein-Volhard C (1987) Tübingen mutants and stocklist. Drosophila Inform Serv 66:209–269

    Google Scholar 

  • Technau GM (1987) A single cell approach to problems of cell lineage and commitment during embryogenesis ofDrosophila melanogaster. Development 100:1–12

    PubMed  Google Scholar 

  • Tepaß U, Theres C, Knust E (1990) TheDrosophila genecrumbs encodes an EGF-like protein expressed on apical membranes ofDrosophila epithelial cells and required for organization of epithelia. Cell 61:787–799

    PubMed  Google Scholar 

  • Tomaselli KJ, Neugebauer KM, Bixby JL, Lilien J, Reichardt LF (1988) N-cadherin and integrins: two receptor systems that mediate neural process outgrowth on astrocyte surfaces. Neuron 1:33–43

    PubMed  Google Scholar 

  • Van der Meer J (1977) Optical clean and permanent mount preparations for phase contrast microscopy of cuticular structures of insect larvae. Drosophila Inform Serv 52:160

    Google Scholar 

  • Weigel D, Jürgens G, Küttner F, Seifert E, Jäckle H (1989a) The homeotic genefork head encodes a nuclear protein and is expressed in the terminal regions of theDrosophila embryo. Cell 57:645–658

    PubMed  Google Scholar 

  • Weigel D, Bellen HJ, Jürgens G, Jäckle H (1989b) Primordium specific requirement of the homeotic genefork head in the developing gut of theDrosophila embryo. Roux's Arch Dev Biol 198:201–210

    Google Scholar 

  • Wieschaus E, Riggleman R (1987) Autonomous requirements for the segment polarity genearmadillo duringDrosophila embryogenesis. Cell 49:177–184

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tepaß, U., Knust, E. Phenotypic and developmental analysis of mutations at thecrumbs locus, a gene required for the development of epithelia inDrosophila melanogaster . Roux's Arch Dev Biol 199, 189–206 (1990). https://doi.org/10.1007/BF01682078

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01682078

Key words

Navigation