Skip to main content
Log in

Morphology of the shoulder musculature of the American kestrel,Falco sparverius (Aves), with implications for gliding flight

  • Published:
Zoomorphology Aims and scope Submit manuscript

Summary

The shoulder morphology of the American kestrel,Falco sparverius, was dissected with an emphasis on the morphological requirements for gliding flight. Kestrels are being used as a model for the study of gliding flight in a non-specialized gliding bird. The kestrel forelimb is relatively generalized in its construction, and does not appear to have any remarkable specializations for gliding. However, several structures found in specialized gliders/soarers which may contribute to gliding were also found in kestrels; these include the presence of a scapular anchor and pectoral muscle fibers inserting onto the tendon of the biceps brachii muscle. This paper is the prelude to an experimental study on the gliding flight in this species and may serve as a basis for future functional or taxonomic comparisons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BB :

M. biceps brachii

Br :

M. brachialis

C :

coracoid

C12 :

12th cervical vertebra

CBA :

M. coracobrachialis cranialis

CBC :

M. coracobrachialis caudalis

DMA :

M. deltoideus major pars cranialis

DMa :

M. deltoideus major

DMC :

M. deltoideus major pars caudalis

DMi :

M. deltoideus minor

ECU :

M. extensor carpi ulnaris

EDC :

M. extensor digitorum communis

EMR :

M. extensor metacarpi radialis

ES :

M. expansor secundariorum

EU :

M. ectopicondylo-ulnaris

F :

furcula

FAH :

Facies articularis humeralis

FASc :

Facies articularis scapularis

FASt :

Facies articularis sternalis

ECU :

M. flexor carpi ulnaris

FP :

Fascia pectoralis

H :

humerus

HCB :

humerocarpal band

HS :

Os humeroscapularc and adjacent shoulder ligaments

K :

sternal keel

LDA :

M. latissimus dorsi pars cranialis

LDC :

M. latissimus dorsi pars caudalis

LMS :

Ligamentous portion of membrana sternocoracoclavicularis

MC :

Membrana cristoclavicularis

MS :

Membrana sternocoracoclavicularis

N :

Notarium

PB :

M. tensor propatagialis pars brevis

PC :

pectoral crest of humerus

PL :

M. tensor propatagialis pars longa

PP :

M. pronator profundus

PPB :

M. pectoralis propatagialis brevis

PPL :

M. pectoralis propatagialis longus

PS :

M. pronator superficialis

PT :

M. pectoralis pars thoracicus

RP :

M. rhomboideus profundus

RS :

M. rhomboideus superficialis

SA :

scapular anchor

SB :

M. subscapularis

SBe :

M. subscapularis pars externa

SBi :

M. subscapularis pars interna

SC :

M. supracoracoideus

Sc :

scapula

SHA :

M. scapulohumeralis cranialis

SHC :

M. scapulohumeralis caudalis

SP :

M. serratus profundus

SSA :

M. serratus superficialis pars cranialis

SSC :

M. serratus superficialis pars caudalis

SSM :

M. serratus superficialis pars metapatagialis

ST :

M. sternocoracoideus

St :

sternum

SU :

M. subcoracoideus

Su :

M. supinator

Sy :

synsacrum

T :

M. triceps

TH :

M. triceps humeralis

TS :

M. triceps scapularis

References

  • Bannasch R (1986) Morphologisch-funktionelle Untersuchungen am Lokomotionsapparat der Pinguine als Grundlage für ein allgemeines Bewegungsmodell des „Unterwasserfluges“. Gegenb Morph Jahrb Leipzig 132:645–679; 132: 757–817; 33:39–59 (1987)

    Google Scholar 

  • Baumel JJ, King AS, Lucas AM, Breazile JE, Evans HE (eds) (1979) Nomina anatomica avium. Academic Press, London, pp 53–219

    Google Scholar 

  • Berger AJ (1955) On the anatomy and relationships of Glossy cuckoos of the generaChrysococcyx, Lampromorpha, andChalcites. Proc US Nat Mus 103:585–597

    Google Scholar 

  • Berger AJ (1956a) The appendicular myology of the pygmy falcon (Polihierax semitorquatus). Am Midl Nat 55(2):326–333

    Google Scholar 

  • Berger AJ (1956b) The expansor secundariorum muscle, with special reference to passerine birds. J Morphol 99:137–167

    Google Scholar 

  • Berger AJ (1956c) The appendicular myology of the sandhill crane, with comparative remarks on the whooping crane. Wilson Bull 68:282–304

    Google Scholar 

  • Berger AJ (1960) The musculature. In: Marshall AJ (ed) Biology and comparative physiology of birds, vol 1. Academic Press, New York

    Google Scholar 

  • Berger AJ (1968) Appendicular myology of Kirtland's warbler. Auk 85:594–616

    Google Scholar 

  • Berger AJ (1969) Appendicular myology of passerine birds. Wilson Bull 81:220–223

    Google Scholar 

  • Bock WJ, Shear CR (1972) A staining method for gross dissection of vertebrate muscles. Anat Anz 130:222–227

    Google Scholar 

  • Dial KP, Kaplan SR, Goslow GE Jr, Jenkins FA Jr (1987) Structure and neural control of the pectoralis in the pigeon: Implications for flight mechanics. Anat Rec 218:284–287

    Google Scholar 

  • Dial KP, Kaplan SR, Goslow GE Jr, Jenkins FA Jr (1988) A functional analysis of the primary upstroke and downstroke muscles in the domestic pigeon (Columba livia) during flight. J Exp Biol 134:1–16

    Google Scholar 

  • Dial KP, Goslow GE Jr, Jenkins FA Jr (1991) The functional anatomy of the shoulder in the European starling (Sturnus vulgaris). J Morphol 207:327–344

    Google Scholar 

  • Dunne P, Sibley D, Sutter C (1988) Hawks in flight. Houghton Mifflin, Boston

    Google Scholar 

  • Fisher HI (1946) Adaptations and comparative anatomy of the locomotor apparatus of New World vultures. Am Midl Nat 35:545–727

    Google Scholar 

  • Fisher HI (1957) Bony mechanism of automatic flexion and extension in the pigeon's wing. Science 126:446

    Google Scholar 

  • Fisher HI, Goodman DC (1955) The myology of the whooping crane,Grus americana. (Ill biol monogr 24 (2):1–127) University of Illinois Press, Urbana

    Google Scholar 

  • George JC, Berger AJ (1966) Avian myology. Academic Press, New York, pp 224–379

    Google Scholar 

  • Goldspink G (1981) The use of muscles during flying, swimming, and running from the point of view of energy saving. Symp Zool Soc Lond 48:219–239

    Google Scholar 

  • Goodge WR (1957) Structure and functional adaptations for aquatic life in the dipper (Cinclus mexicanus). PhD thesis, University of Washington, Seattle

    Google Scholar 

  • Howell AB (1937) Morphogenesis of the shoulder architecture: Aves. Auk 54:364–375

    Google Scholar 

  • Hudson GE, Lanzillotti PJ (1955) Gross anatomy of the wing muscles in the family Corvidae. Am Midl Nat 53:1–44

    Google Scholar 

  • Hudson GE, Lanzillotti PJ (1964) Muscles of the pectoral limb in galliform birds. Am Midl Nat 71:1–113

    Google Scholar 

  • Hudson GE, Hoff KM, Vanden Berge J, Trivette EC (1969) A numerical study of the wing and leg muscles of Lari and Alcae. Ibis 111:454–523

    Google Scholar 

  • Jollie M (1977) A contribution to the morphology and phylogeny of the Falconiformes. Evol Theory 2:115–300

    Google Scholar 

  • Kaplan SR, Goslow GE Jr (1989) Neuromuscular organization of the pectoralis (pars thoracicus) of the pigeon (Columba livia): Implications for motor control. Anat Rec 224:426–430

    Google Scholar 

  • Kuroda N (1961) A note on the pectoral muscles of birds. Auk 78:261–263

    Google Scholar 

  • Leach JA (1914) The myology of the bell-magpie (Strepera) and its position in classification. Emu 14:2–38

    Google Scholar 

  • Maier A (1983) Differences in muscle spindle structure between pigeon muscles used in aerial and terrestrial locomotion. Am J Anat 168:27–36

    Google Scholar 

  • McKitrick MC (1985) Myology of the pectoral appendage in kingbirds (Tyrannus) and their allies. Condor 87:402–417

    Google Scholar 

  • Meyers RA (1992a) The functional morphology of gliding and flapping flight in the American kestrel,Falco sparverius (Aves: Falconiformes). PhD thesis, Brown University

  • Meyers RA (1992b) The morphological basis of folded-wing posture in the American kestrel,Falco sparverius. Anat Rec 232:493–498

    Google Scholar 

  • Meyers RA (in press) The avian fascia pectoralis: anatomy and functional implications. Morphol Jahrb

  • Pennycuick CJ(1972) Soaring behaviour and performance of some East African birds, observed from a motor-glider. Ibis 114:178–218

    Google Scholar 

  • Pennycuick CJ (1982) The flight of petrels and albatrosses (Procellariiformes), observed in South Georgia and its vicinity. Phil Trans R Soc Lond B 300:75–106

    Google Scholar 

  • Raikow RJ (1977) Pectoral appendage myology of the Hawaiian honeycreepers (Drepanididae). Auk 94:331–342

    Google Scholar 

  • Raikow RJ (1978) Appendicular myology and relationships of the New World nine-primaried oscines (Aves: Passeriformes). Bull Carneg Mus Nat Hist 7:1–43

    Google Scholar 

  • Raikow RJ (1985) Locomotor system. In: King AS, McLelland J (eds) Form and function in birds, vol 3. Academic Press, London, pp 57–147

    Google Scholar 

  • Rosser BWC (1980) The wing muscles of the American coot (Fulica americana Gmelin). Can J Zool 58:1758–1773

    Google Scholar 

  • Rosser BWC, George JC (1986) Slow muscle fibers in the pectoralis of the turkey vulture (Cathartes aura): an adaptation for soaring flight. Zool Anz 217:252–258

    Google Scholar 

  • Schreiweis DO (1982) A comparative study of the appendicular musculature of Penguins (Aves: Sphenisciformes). Smithson Contrib Zool 341:1–46

    Google Scholar 

  • Shufeldt RW (1890) The myology of the raven. McMillan, London

    Google Scholar 

  • Sibley CG, Ahlquist JA (1990) Phylogeny and classification of birds. Yale University Press, New Haven, pp 471–787

    Google Scholar 

  • Simić V, Andrejević V (1963) Morphologie und Topographie der Brustmuskeln bei den Hausphasioniden und der Taube. Morphol Jahrb 104:546–560

    Google Scholar 

  • Simić V, Andrejević V (1964) Morphologie und Topographie der Brustmuskeln bei den Hausschwimmvögeln. Morphol Jahrb 106:480–490

    Google Scholar 

  • Sokoloff A, Deacon T, Goslow GE Jr (1989) Musculotopic innervation of the primary flight muscles, the pectoralis (pars thoracicus) and supracoracoideus, of the pigeon (Columba livia): a WGA-HRP study. Anat Rec 225:35–40

    Google Scholar 

  • Spedding GR (1987) The wake of a kestrel (Falco tinnunculus) in gliding flight. J Exp Biol 127:45–57

    Google Scholar 

  • Stegmann BC (1964) Die funktioneile Bedeutung des Schlüsselbeines bei den Vögeln. J Ornithol 105:450–463

    Google Scholar 

  • Swinebroad J (1954) A comparative study of the wing myology of certain passerines. Am Midl Nat 51:488–514

    Google Scholar 

  • Sy M (1936) Funktionell-anatomische Untersuchungen am Vogelflügel. J Ornithol 84:199–296

    Google Scholar 

  • Vanden Berge JC (1970) A comparative study of the appendicular musculature of the Order Ciconiiformes. Am Midl Nat 84:289–364

    Google Scholar 

  • Videler JJ, Weihs D, Daan S (1983) Intermittent gliding in the hunting flight of the kestrel,Falco tinnunculus L. J Exp Biol 102:1–12

    Google Scholar 

  • Videler JJ, Groenewold A (1991) Field measurements of hanging flight aerodynamics in the kestrelFalco tinnunculus. J Exp Biol 155:519–530

    Google Scholar 

  • Windhorst U, Hamm TM, Stuart DG (1989) On the function of muscle and reflex partitioning. Behav Brain Sci 12:629–681

    Google Scholar 

  • Zusi RL, Bentz GP (1984) Myology of the purple-throated carib (Eulampis jugularis) and other hummingbirds (Aves: Trochilidae). Smithson Contrib Zool 385:1–70

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyers, R.A. Morphology of the shoulder musculature of the American kestrel,Falco sparverius (Aves), with implications for gliding flight. Zoomorphology 112, 91–103 (1992). https://doi.org/10.1007/BF01673810

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01673810

Keywords

Navigation