Skip to main content
Log in

Reactivation of X-linked genes in human fibroblasts transformed by origin-defective SV40

  • Published:
Somatic Cell and Molecular Genetics

Abstract

To determine if expression of genes on the inactive X is inducible in human cells, we looked for reactivation events in a clone of fibroblasts transformed with origin-defective SV40. The karyotype of these cells was grossly heteroploid so that the aneuploidy associated with SV40 transformation occurs even in the absence of viral replication. This transformed clone, heterozygous for hypoxanthine phosphoribosyltransferase (HPRT), lacks HPRT activity, as the mutant allele is on the active X and the normal allele on the inactive X. Reactivation of the HPRT + allele on the inactive X was observed at a frequency of 6 x 10 −5 per cell and increased approximately eightfold following treatment with the cytidine analogs 5-azacytidine (5azaC) and 5-azadeoxycytidine. The fact that spontaneous reactivation is detectable in some clones, but not all, suggests that the environment of the SV40-transformed cell, although not sufficient to induce generalized derepression, increases the frequency of rare reactivation events. The methylation pattern at the HPRTlocus revealed transformation-associated alterations that may have predisposed these cells to reactivation events, spontaneous as well as 5azaC-induced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Lyon, M.F. (1973).Biol. Rev. 47:1–35.

    Google Scholar 

  2. Gartler, S.M., Liskay, R.M., Campbell, B.K., Sparks, R., and Grant, N. (1972).Cell Differ. 1:215–218.

    Google Scholar 

  3. Migeon, B.R., Wolf, S.F., Axelman, J., Kaslow, D.C., and Schmidt, M. (1985).Proc. Natl. Acad. Sci. U.S.A. 82:3390–3394.

    Google Scholar 

  4. Migeon, B.R., Wolf, S.F., Mareni, C., and Axelman, J. (1982).Cell 29:595–600.

    Google Scholar 

  5. Mohandas, T., Sparks, R.S., and Shapiro, L.J. (1981).Science 211:393–396.

    Google Scholar 

  6. Graves, J.A.M. (1982).Exp. Cell Res. 141:99–105.

    Google Scholar 

  7. Jones, P.A., Taylor, S.M., Mohandas, T., and Shapiro, L.J. (1982).Proc. Natl. Acad. Sci. U.S.A. 79:1215–1219.

    Google Scholar 

  8. Lester, S.C., Korn, N.J., and DeMars, R. (1982).Somat. Cell Genet. 8:265–284.

    Google Scholar 

  9. Hors-Cayla, M.C., Heuertz, S., and Frezal, J. (1983).Somat. Cell Genet. 9:645–657.

    Google Scholar 

  10. Kahan, B., and DeMars, R. (1975).Proc. Natl. Acad. Sci. U.S.A. 72:1510–1514.

    Google Scholar 

  11. Hellkuhl, B., and Grzeschik, K.H. (1978).Cytogenet. Cell Genet. 22:527–530.

    Google Scholar 

  12. Jones, P.A., and Taylor, S.M. (1980).Cell 20:85–93.

    Google Scholar 

  13. Graves, J.A.M., and Young, G.J. (1982).Exp. Cell Res. 141:87–97.

    Google Scholar 

  14. Comings, D.E. (1966).Lancet 2:1137–1138.

    Google Scholar 

  15. Migeon, B.R. (1972).Nature 239:87–89.

    Google Scholar 

  16. Wolf, S.F., and Migeon, B.R. (1982).Nature 295:667–671.

    Google Scholar 

  17. Romeo, G., and Migeon, B.R. (1975).Humangenetik 29:165–170.

    Google Scholar 

  18. Raskind, W.H., and Gartler, S.M. (1979).Somat. Cell Genet. 5:945–955.

    Google Scholar 

  19. Sack, G.H. (1981).In Vitro 17:1–19.

    Google Scholar 

  20. Gluzman, Y., Frisque, R.J., and Sambrook, J. (1980).Cold Spring Harbor Symp. Quant. Biol. 44:293–299.

    Google Scholar 

  21. Wolf, S.F., Jolly, D.J., Lunnen, K.D., Friedman, T., and Migeon, B.R. (1984).Proc. Natl. Acad. Sci. U.S.A. 81:2806–2810.

    Google Scholar 

  22. Migeon, B.R., Sprenkle, J.A., and Do, T.T. (1978). InGenetic Mosaics and Chimeras in Mammals, (ed.) Russell, L.B. (Plenum Press, New York), pp. 329–337.

    Google Scholar 

  23. Gluzman, Y., Sambrook, J.F., and Frisque, R.J. (1980).Proc. Natl. Acad. Sci. U.S.A. 77:3898–3902.

    Google Scholar 

  24. Corsaro, C.M., and Pearson, M.L. (1981).Somat. Cell Genet. 7:603–616.

    Google Scholar 

  25. Small, J.A., Blair, D.G., Showalter, S.D., and Scangos, G.A. (1985).Mol. Cell. Biol. 5:642–648.

    Google Scholar 

  26. Yunis, J., and Chandler, M.E. (1977). InProgress in Clinical Pathology, (eds.) Stefanini, M., and Hossaini, A.A. (Grune & Stratton, New York), pp. 267–288.

    Google Scholar 

  27. Casperson, T., Lomakaa, G., and Zech, L. (1971).Hereditas 67:89–102.

    Google Scholar 

  28. Schmidt, M., Wolf, S.F., and Migeon, B.R. (1985).Exp. Cell Res. 158:301–310.

    Google Scholar 

  29. Christy, B., and Scangos, G. (1982).Proc. Natl. Acad. Sci. U.S.A. 79:6299–6303.

    Google Scholar 

  30. Koprowski, H., Ponten, J.A., Jensen, F., Ravdin, R.G., Moorhead, P., and Saksela, E. (1962).J. Cell. Comp. Physiol. 59:281–292.

    Google Scholar 

  31. Moorhead, P.S., and Saksela, E. (1963).J. Cell. Comp. Physiol. 62:57–83.

    Google Scholar 

  32. Wolman, S.R., Hirschhorn, K., and Todaro, G.J. (1964).Cytogenetics 3:45–61.

    Google Scholar 

  33. Zuna, R.G., and Lehman, J.M. (1977).J. Natl. Cancer Inst. 58:1463–1472.

    Google Scholar 

  34. Mohandas, T., Sparkes, R.S., Bishop, D.F., Desnick, R.J., and Shapiro, L.J. (1984).Am. J. Hum. Genet. 36:916–925.

    Google Scholar 

  35. Yen, P.H., Patel, P., Chinault, A.C., Mohandas, T., and Shapiro, L.J. (1984).Proc. Natl. Acad. Sci. U.S.A. 81:1759–1763.

    Google Scholar 

  36. Cooper, D.N., Taggart, M.H., and Bird, A.P. (1985).Nucleic Acids Res. 11:647–658.

    Google Scholar 

  37. Wolf, S.F., and Migeon, B.R. (1985).Nature 314:467–469.

    Google Scholar 

  38. Kingston, R.E., Baldwin, A.S., and Sharp, A. (1985).Cell 41:3–5.

    Google Scholar 

  39. Nadon, N., Sekhon, G., Chang, C., Peterson, J., Strandtmann, J., Brown, L., and DeMars, R. (1985).Am. J. Hum. Genet. 37:A234.

    Google Scholar 

  40. Paterno, G.D., Adra, C.N., and McBurney, M.W. (1985).Mol Cell. Biol. 5:2705–2712.

    Google Scholar 

  41. Gama-Sosa, M.A., Slagel, V.A., Trewyn, R.W., Oxenhandler, R., Kuo, K.C., Gehrke, C.W., and Ehrlich M. (1983).Nucleic Acids Res. 11:6883–6894.

    Google Scholar 

  42. Kautiainen, T.L., and Jones, P.A. (1986).J. Biol. Genet. 4:1594–1598.

    Google Scholar 

  43. Levitt, L.J., Boss, G.R., and Erbe, R.W. (1986).Cancer 57:764–768.

    Google Scholar 

  44. Small, M.B., Gluzman, Y., and Ozer, H.L. (1982).Nature 296:671–672.

    Google Scholar 

  45. Schwartzbaum, S., Halpern, R., and Diamond, B. (1984).J. Immunol. 132:1158–1162.

    Google Scholar 

  46. Littlefield, J.W. (1976).Variation, Senescence, and Neoplasia, (Harvard University Press, Cambridge).

    Google Scholar 

  47. Nagata, Y., Diamond, B., and Bloom, B.R. (1983).Nature 306:597–599.

    Google Scholar 

  48. Canaani, D., Naiman, T., Teitz, T., and Berg, P. (1986).Somat. Cell Mol. Genet. 12:13–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beggs, A.H., Axelman, J. & Migeon, B.R. Reactivation of X-linked genes in human fibroblasts transformed by origin-defective SV40. Somat Cell Mol Genet 12, 585–594 (1986). https://doi.org/10.1007/BF01671944

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01671944

Keywords

Navigation