Skip to main content
Log in

Phase behavior and structure of liquid crystalline solutions of cellulose derivatives

  • Original Contributions
  • Polymer Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Summary

Structural and thermodynamic characteristics of liquid-crystalline solutions of four cellulose derivatives in a range of solvents were studied. Basic observations were made on these systems using polarized light microscopy, small angle light scattering, dilute solution and concentrated solution viscosities. The polymers studied include hydroxypropyl cellulose (HPC), cellulose acetate butyrate (CAB), ethyl cellulose (EC), and cellulose triacetate (CT). The formation of the liquid crystalline phase was shown to strongly depend on polymer concentration, solvent type and temperature. The critical volume fraction of polymer required to form the liquid crystal phase varied significantly as the solvent changed. The critical volume fraction decreased with increasing solvent acidity and polymer intrinsic viscosity in a given solvent. The breadth of the two phase region seems to decrease with increasing acidity. The liquid crystalline phase was in most cases determined to be cholesteric. In all cases positively birefringent cellulose derivatives form negative spherulitic domains. In one case, the negativity birefringent system (cellulose triacetate) formed positively birefringent spherulitic liquid crystalline domains. This is interpreted to mean the structure organizes itself by a tangential alignment of polymer chains within the domain. SALS measurements appear to detect domains and in some cases cholesteristic pitch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Robinson, C., Trans. Faraday Soc.52, 571 (1956), Tetrahedron13, 219 (1961).

    Google Scholar 

  2. Samulski E. T., A. V. Tobolsky, in: Liquid Crystals and Plastic Crystals edited by G. Gray and P. Winsor, Wiley, NY (1974).

    Google Scholar 

  3. Onogi, Y., J. L. White, J. F. Fellers, J. Polym. Sci. Polym. Phys.18, 663 (1980).

    Google Scholar 

  4. Kwolek, S. L., U. S. Patent, 3, 671, 542 (1972).

  5. Hancock, T. A., J. E. Spruiell, J. L. White, J. Appl. Polym. Sci.21, 1227 (1977).

    Google Scholar 

  6. Morgan, P. W., Macromolecules10, 1381 (1977).

    Google Scholar 

  7. Kwolek, S. L., P. W. Morgan, J. R. Shaefgen, L. W. Gulrich, Macromolecules10, 1390 (1977).

    Google Scholar 

  8. Bair, T. I., P. W. Morgan, F. L. Killian, Macromolecules10, 1396 (1977).

    Google Scholar 

  9. Panar, M., L. F. Beste, Macromolecules10, 1401 (1977).

    Google Scholar 

  10. White, J. L., J. F. Fellers, Appl. Polym. Symp.33, 137 (1978).

    Google Scholar 

  11. Jackson, W. J., H. F. Kuhfuss, J. Polym. Sci. Polym. Chem.14, 2043 (1976).

    Google Scholar 

  12. Pletcher, T. C., U. S. Patent, 3, 991, 013 (1976), andJ. J. Kleinschuster, U.S. Patent, 3, 991, 014 (1976).

  13. Werbowyj, R. S., D. G. Gray, Mol. Cryst, Liq. Cryst.34, (Letters) 97 (1976).

    Google Scholar 

  14. Werbowyj, R. S., D. G. Gray, Macromolecules13, 69 (1980).

    Google Scholar 

  15. Panar, M., O. B. Willcox, Offenlegungsschrift, 2705381, German Federal Republic (1977).

  16. Aharoni, S. M., Mol. Cryst. Liq. Cryst.56, (Letters) 237 (1980).

    Google Scholar 

  17. Chanzy, H., M. Dube, R. H. Marchessault, J. Polym. Sci., Polym. Letters17, 219 (1979).

    Google Scholar 

  18. Onogi, Y., J. L. White, J. F. Fellers, J. Non-Newt. Fluid Mech.7, 121 (1980).

    Google Scholar 

  19. Aoki, H., J. L. White, J. F. Fellers, J. Appl. Polym. Sci.23, 2293 (1979).

    Google Scholar 

  20. Aoki, H., Y. Onogi, J. L. White, J. F. Fellers, Polym. Eng. Sci.20, 221 (1980).

    Google Scholar 

  21. Flory, P. J., Proc. Roy. Soc.A234, 73 (1956).

    Google Scholar 

  22. Bender, B. W., J. Appl. Polym. Sci.9, 2887 (1965).

    Google Scholar 

  23. Molau, G. E., W. M. Witbrodt, V. E. Meyer, J. Appl. Polym. Sci.13, 2735 (1969).

    Google Scholar 

  24. Wirick, M. G., M. H. Waldman, J. Appl. Polym. Sci.14, 579 (1970).

    Google Scholar 

  25. Denbigh, K., The Principles of Chemical Equilibrium, 3rd Edition, Cambridge University Press (1971).

  26. Stein, R. S., M. B. Rhodes, J. Appl. Phys.31, 1873 (1960).

    Google Scholar 

  27. Samuels, R. J., J. Polym. Sci. A-2,9, 2165 (1971).

    Google Scholar 

  28. Hashimoto, T., A. Todo, H. Kawai, J. Polym. Sci. Polym. Phys.11, 149, (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 5 figures and 4 tables

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bheda, J., Fellers, J.F. & White, J.L. Phase behavior and structure of liquid crystalline solutions of cellulose derivatives. Colloid & Polymer Sci 258, 1335–1342 (1980). https://doi.org/10.1007/BF01668781

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01668781

Keywords

Navigation