Skip to main content
Log in

Methodology of long-term culture of human hemopoietic cells

  • Published:
Journal of tissue culture methods

Summary

Long-term culture (LTC) of hemopoietic cells has become a relatively specific operational term that is used to refer to a system in which very primitive hemopoietic cells can survive, proliferate, and differentiate into precursors of many lineages in the absence of exogenously added growth factors, but in the presence of other “stromal” cells. The latter are also of marrow origin but are developmentally unrelated to hemopoietic cells. Not surprisingly, therefore, a knowledge of the essential components of the system is required to initiate and maintain cultures in which sustained hemopoiesis will be reproducibly obtained. A considerable body of empirical data has been accumulated to define procedures that achieve this with normal human marrow, and analysis of the system itself has provided an understanding of some of the cellular and molecular dynamics that take place. This review surveys some of the more important features of LTC of human hemopoietic cells, provides associated methodologic information, and summarizes some current and anticipated applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

V. References

  1. Barnett, M. J.; Eaves, C. J.; Phillips, G. L., et al. Succesaful autografting in chronic myeloid leukaemia after maintenance of marrow in culture. Bone Marrow Transplant. 4:345–351; 1989.

    Google Scholar 

  2. Bentley, S. A. Close range cell:cell interaction required for stem cell maintenance in continuous bone marrow culture. Exp. Hematol. 9:308–312; 1981.

    Google Scholar 

  3. Boswell, H. S.; Albrecht, P. R.; Shupe, R. E., et al. Role of stromal populations in hemopoietic stem cell proliferation. I. Physically distinct subpopulations of hemopoietic stem cells end stromal progenitors determine long-term culture hemopoiesis. Exp. Hematol. 15:46–53; 1987.

    Google Scholar 

  4. Cashman, J.; Eaves, A. C.; Eaves, C. J. Regulated proliferation of primitive hematopoietic progenitor cells in long-term human marrow cultures. Blood 66:1002–1005; 1985.

    Google Scholar 

  5. Cashman, J. D.; Eaves, A. C.; Raines, E. W., et al. Mechanisms that regulate the cell cycle status of very primitive hematopoietic cells in long-term human marrow cultures. I. Stimulatory role of a variety of mesenchymal cell activators and inhibitory role of TGF-β. Blood 75:96–101; 1990.

    Google Scholar 

  6. Chang, J.; Morgenstern, G. R.; Coutinho, L. H., et al. The use of bone marrow cells grown in long-term culture for autologous bone marrow transplantation in acute myeloid leukaemia: an update. Bone Marrow Transplant. 4:5–9; 1989.

    Google Scholar 

  7. Clark, S. C.; Kamen, R. The human hematopoietic colony-stimulating factors. Science 236:1229–1237; 1987.

    Google Scholar 

  8. Coulombel, L.; Eaves, A. C.; Eaves, C. J. Enzymatic treatment of long-term human marrow cultures reveals the preferential location of primitive hemopoietic progenitors in the adherent layer. Blood 62:291–297; 1983.

    Google Scholar 

  9. Coulombel, L.; Eaves, C.; Kalousek, D., et al. Long-term marrow culture of cells from patients with acute myelogenous leukemia. Selection in favor of normal phenotypes in some but not all cases. J. Clin. Invest. 75:961–969; 1985.

    Google Scholar 

  10. Coulombel, L.; Kalousek, D. K.; Eaves, C. J., et al. Long-term marrow culture reveals chromosomally normal hematopoietic progenitor cells in patients with Philadelphia chromosome-positive chronic myelogenous leukemia. N. Engl. J. Med. 308:1493–1498; 1983.

    Google Scholar 

  11. Dexter, T. M.; Allen, T. D.; Lajtha, L. G. Conditions controlling the proliferation of hemopoietic stem cells in vitro. J. Cell. Physiol. 91:335–344; 1977.

    Google Scholar 

  12. Dexter, T. M.; Spooncer, E. Growth and differentiation in the hemopoietic system. Ann. Rev. Cell Biol. 3:423–441; 1987.

    Google Scholar 

  13. Dexter, T. M.; Spooncer, E.; Toksoz, D., et al. The role of cells and their products in the regulation of in vitro stem cell proliferation and granulocyte development. J. Supramol. Struc. 13:513–524; 1980.

    Google Scholar 

  14. Dorshkind, K.; Johnson, A.; Collins, L., et al. Generation of purified stromal cell cultures that support lymphoid and myeloid precursors. J. Immunol. Methods 89:37–47; 1986.

    Google Scholar 

  15. Eaves, A. C.; Barnett, M. J.; Phillips, G. L., et al. The therapeutic potential of long-term CML marrow cultures. In: Daniak, N., ed. The biology of hematopoiesis. New York: Alan R. Liss, Inc.; (in press).

  16. Eaves, A. C.; Cashman, J. D.; Gaboury, L. A., et al. Clinical significance of long-term cultures of myeloid blood cells. CRC Crit. Rev. Oncol. Hematol. 7:125–138; 1987.

    Google Scholar 

  17. Eaves, A. C.; Cashman, J. D.; Gaboury, L. A., et al. Unregulated proliferation of primitive chronic myeloid leukemia progenitors in the presence of normal marrow adherent cells. Proc. Natl. Acad. Sci. USA 83:5306–5310; 1986.

    Google Scholar 

  18. Eaves, C. J.; Eaves, A. C. Regulation of hemopoietic progenitor cell proliferation. Behring Inst. Mitt. 83:85–92; 1988.

    Google Scholar 

  19. Eaves, C. J.; Humphries, R. K.; Eaves, A. C. Self-renewal of hemopoietic stem cells: evidence for stochastic regulatory processes. In: Stamatoyannopoulos, G.; Nienhuis, A. W., eds. Hemoglobins in development and differentiation. New York: Alan R Liss, Inc.; 1981:35–44.

    Google Scholar 

  20. Eaves. C. J.; Sutherland. H. J.; Udomsakdi, C., et al. The human hematopoietic stem cell in vitro and in vivo. Proceedings of the Sixth Annual Symposium on the Molecular Biology of Hemopoiesis; (in press).

  21. Fraser, C. C.; Eaves, C. J.; Szilvassy, S. J., et al. Expansion in vitro of retrovirally marked totipotent hematopoietic stem cells. Blood 76:1071–1076; 1990.

    Google Scholar 

  22. Gartner, S.; Kaplan, H. S. Long-term culture of human bone marrow cells. Proc. Natl. Acad. Sci. USA 77:4756–4759; 1980.

    Google Scholar 

  23. Greenberg, H. M.; Newburger, P. E.; Parker, L. M., et al. Human granulocytes generated in continuous bone marrow culture are physiologically normal. Blood 58:724–732; 1981.

    Google Scholar 

  24. Greenberger, J. S. Sensitivity of corticosteroid-dependent insulin-resistant lipogenesis in marrow preadipocytes of obese-diabetic (db/db) mice. Nature 275:752–754; 1978.

    Google Scholar 

  25. Gregory, C. J.; Eaves, A. C. Human marrow cells capable of erythropoietic differentiation in vitro: definition of three erythroid colony responses. Blood 49:855–864; 1977.

    Google Scholar 

  26. Hughes, P. F. D.; Eaves, C. J.; Hogge, D. E., et al. High-efficiency gene transfer to human hematopoietic cells maintained in long-term marrow culture. Blood 74:1915–1922; 1989.

    Google Scholar 

  27. Humphries, R. K.; Jacky, P. B.; Dill, F. J., et al. CFU-S in individual erythroid colonies derivedin vitro from adult mouse marrow. Nature 279:718–720; 1979.

    Google Scholar 

  28. Krystal, G.; Eaves, C. J.; Eaves, A. C. CM Affi-gel blue chromatography of human urine: a simple one-step procedure for obtaining erythropoietin suitable forin vitro erythropoietic assays. Br. J. Haematol. 58:533–546; 1984.

    Google Scholar 

  29. Messner, H. A. Human stem cells in culture. In: McCulloch, E. A., ed Clinics in haematology. Cell culture techniques, vol 13. London: W. B. Saunders Company; 1984:393–404.

    Google Scholar 

  30. Metcalf, D. Hemopoietic colonies. In vitro cloning of normal and leukemic cells. Berlin Heidelberg: Springer-Verlag; 1977.

    Google Scholar 

  31. Nakahata, T.; Ogawa, M. Identification in culture of a class of hemopoietic colony-forming units with extensive capability to self-renew and generate multipotential hemopoietic colonies. Proc. Natl. Acad. Sci. USA 79:3843–3847; 1982.

    Google Scholar 

  32. Otsuks, T.; Thacker, J. D.; Cashman, J. D., et al. Microenvironmental presentation of human IL-3 is required for the stimulation of very primitive human progenitors in long-term marrow cultures. Exp. Hematol. 18:569; 1990.

    Google Scholar 

  33. Roberts, R.; Gallagher, J.; Spooncer, E., et al. Heparan sulphate bound growth factors: a mechanism for stromal cell mediated haemopoiesis. Nature 332:376–378; 1988.

    Google Scholar 

  34. Slovick, F. T.; Abboud, C. N.; Brennan, J. K., et al. Survival of granulocytic progenitors in the nonadherent and adherent compartments of human long-term marrow cultures. Exp. Hematol. 12:327–338; 1984.

    Google Scholar 

  35. Sutherland, H. J.; Lansdorp, P. M.; Henkelman, D. H., et al. Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proc. Natl. Acad. Sci. USA 87:3584–3588; 1990.

    Google Scholar 

  36. Szilvassy, S. J.; Humphries, R. K.; Lansdorp, P. M., et al. New assay for quantitating totipotent reconstituting hematopoietic stem cells using a competitive repopulation strategy. Proc. Natl. Acad. Sci. USA; (in press).

  37. Winton, E. F.; Colenda, K. W. Use of long-term human marrow cultures to demonstrate progenitor cell precursors in marrow treated with 4-hydroperoxycyclophosphamide. Exp. Hematol. 15:710–714; 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eaves, C.J., Cashman, J.D. & Eaves, A.C. Methodology of long-term culture of human hemopoietic cells. Journal of Tissue Culture Methods 13, 55–61 (1991). https://doi.org/10.1007/BF01666132

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01666132

Key words

Navigation