Skip to main content
Log in

The Bacillus megaterium ribonucleotide reductase: Evidence for a B12 coenzyme requirement

  • General and Review Articles
  • b. general articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

On the basis of the following evidence, it has been concluded that extracts ofBacillus megaterium KM contain a B12 coenzyme-dependent ribonucleotide reductase. The reduction of cytidine nucleotides to deoxycytidine nucleotides is enhanced by the addition of B12 coenzyme. In addition, the presence of hydroxyurea, a specific inhibitor of non-B12 coenzymedependent reductases, has only a slight effect on this reduction. Finally,B. megaterium extracts catalyze a transfer of tritium from 5′-deoxyadenosylcobalamin-5′-3H2 to water, a reaction specific for B12 coenzyme-dependent ribonucleotide reductases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. H. Abeles, W. S. Beck. The mechanism of action of cobamide coenzyme in the ribonucleotide reductase reaction. J. Biol. Chem. 242, 3589 (1967).

    Google Scholar 

  2. W. S. Beck, R. H. Abeles, W. G. Robinson. Transfer of hydrogen from cobamide coenzyme to water during enzymatic ribonucleotide reduction. Biochem. Biophys. Res. Commun. 25, 421 (1966).

    Google Scholar 

  3. O. Berglund, O. Karlström, P. Reichard. A new ribonucleotide reductase system after infection with phage T4. Proc. Nat. Acad. Sci. U.S.A. 62, 829 (1969).

    Google Scholar 

  4. C. Biswas, J. Hardy, W. S. Beck. Release of repressor control of ribonucleotide reductase by thymine starvation. J. Biol. Chem. 240, 3631 (1965).

    Google Scholar 

  5. R. L. Blakley, R. K. Ghambeer, P. F. Nixon, E. Vitols. The cobamidedependent ribonucleoside triphosphate reductase ofLactobacilli. Biochem. Biophys. Res. Commun. 20, 439 (1965).

    Google Scholar 

  6. R. L. Blakley, E. Vitols. The control of nucleotide biosynthesis. Ann. Rev. Biochem. 37, 201 (1968).

    Google Scholar 

  7. G. A. Bray. A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter. Anal. Biochem. 1, 279 (1960).

    Google Scholar 

  8. J. R. Cowles, H. J. Evans, S. A. Russell. B12 coenzyme-dependent ribonucleotide reductase inRhizobium species and the effects of cobalt deficiency on the activity of the enzyme. J. Bacteriol. 97, 1460 (1969).

    Google Scholar 

  9. H. L. Elford. Effect of hydroxyurea on ribonucleotide reductase. Biochem. Biophys. Res. Commun. 33, 129 (1968).

    Google Scholar 

  10. F. K. Gleason, H. P. C. Hogenkamp. Ribonucleotide reductase fromEuglena gracilis, a deoxyadenosyl-cobalamin-dependent enzyme. J. Biol. Chem. 245, 4894 (1970).

    Google Scholar 

  11. H. P. C. Hogenkamp, R. K. Ghambeer, C. Brownson, R. L. Blakley, E. Vitols. VI. Enzyme-catalyzed hydrogen exchange between water and deoxyadenosyl-cobalamin. J. Biol. Chem. 243, 799 (1968).

    Google Scholar 

  12. I. H. Krakoff, N. C. Brown, P. Reichard. Inhibition of ribonucleoside diphosphate reductase by hydroxyurea. Cancer Res. 28, 1559 (1968).

    Google Scholar 

  13. O. H. Lowry, N. J. Rosebrough, A. L. Farr, R. J. Randall. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265 (1951).

    Google Scholar 

  14. E. C. Moore. Mammalian ribonucleoside diphosphate reductases.In L. Grossman and K. Moldave (ed.),Methods in Enzymology, Vol. XIIA pp. 155–164. Academic Press Inc., New York (1967).

    Google Scholar 

  15. P. Reichard. The biosynthesis of deoxyribonucleotides. Eur. J. Biochem. 3, 259 (1968).

    Google Scholar 

  16. P. Reichard, A. Baldesten, L. Rutberg. Formation of deoxycytidine phosphates from cytidine phosphates in extracts fromEscherichia coli. J. Biol. Chem. 236, 1150 (1961).

    Google Scholar 

  17. J. R. Steeper, C. D. Steuart. A rapid assay for CDP reductase activity in mammalian cell extracts. Anal. Biochem. 34, 123 (1970).

    Google Scholar 

  18. E. Vitols, R. L. Blakley. Hydrogen-donor specificity of ribonucleoside triphosphate reductase fromLactobacillus leichmannii. Biochem. Biophys. Res. Commun. 21, 466 (1965).

    Google Scholar 

  19. J. T. Wachsman, S. Kemp, L. Hogg. Thymineless death inBacillus megaterium. J. Bacteriol. 87, 1079 (1964).

    Google Scholar 

  20. J. T. Wachsman, D. D. Morgan. Deoxynucleoside kinases ofBacillus megaterium KM. J. Bacteriol. 105, 787 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yau, S., Wachsman, J.T. The Bacillus megaterium ribonucleotide reductase: Evidence for a B12 coenzyme requirement. Mol Cell Biochem 1, 101–105 (1973). https://doi.org/10.1007/BF01659943

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01659943

Keywords

Navigation