Skip to main content
Log in

Organisation anatomique et physiologique des activités motrices de la moelle épinière

  • Published:
Anatomia clinica Aims and scope Submit manuscript

Résumé

La moelle épinière utilise deux grandes modalités fonctionnelles: l'activité réflexe et l'activité programmée.

L'activité réflexe constitute la modalité la plus anciennement connue, elle englobe de nombreux arcs réflexes imprégnés de finalités fort diverses. Ainsi le réflexe myotatique, arc monosynaptique le plus simple, maintient et protège le tonus musculaire; les réflexes à point de départ cutané, polysynaptiques, impliquant des réseaux interneuronaux, extériorisent des réponses motrices de défense et de protection indiquant déjà une compétence plus intégrative.

L'activité programmée médullaire est supportée par des circuits neuronaux assez solidement fixés. Cette organisation fonctionnelle produit des séquences motrices correctement agencées dans l'espace et dans le temps (locomotion, miction, défécation, réflexes sexuels).

Aces deux modalités basales viennent se superposer les influences supra-spinales à capacité exécutoire. Ces signaux, canalisés vers la voie finale commune, agissent, dans une faible part, directement sur les motoneurones spinaux et, en effet, dans une très large mesure, ils utilisent les circuits interneuronaux et modulent ou déclenchent réflexes et programmes médullaires engendrant ainsi une activité cinétique cohérente.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliographie

  • Anden NE, Lundberg A, Rosengren E, Vyklicky L: The effect of DOPA on spinal reflexes from the FRA (flexor reflex afferents). Experientia 19:654–655, 1963

    Article  CAS  PubMed  Google Scholar 

  • Anden NE, Carlsson A, Hillarp NA, Magnusson T: 5-hydroxytryptamine release by nerve stimulation of the spinal cord. Life Sci 3:473–474, 1964

    Article  CAS  PubMed  Google Scholar 

  • Ayérs JL, Selverston AI: Synaptic control of an endogenous pacemaker network. J Physiol (Paris) 73:453–461, 1977

    Google Scholar 

  • Barker D: Muscles receptors, Symposium on muscles receptors, Hong-Kong, 1962: Hong Kong University Press 1962

  • Barnes WJP: Nervous control of locomotion in Crustacea. In: Simple nervous system, PNR Usherwood, DR Newth, eds, pp 415–441. Arnold Publishers 1974

  • Bathien N: Réflexes médullaires et contrôle supra-segmentaire. In: Du contrôle moteur à l'organisation du geste (H Hecaen, M Jeannerod, eds, pp 52–72). Paris: Masson 1978

    Google Scholar 

  • Berkinblit MB, Deliagina TG, Feldman AG, Gelfand IM, Orlovsky GN: Generation of scratching I et II. J Neurophysiol 41:1040–1069, 1978

    CAS  PubMed  Google Scholar 

  • Bessou P, Emonent-Denand F, Laporte Y: Destinée extra-et intrafusale de certains motoneurones. CR Acad Sci (Paris) 256:5625–5627, 1963

    CAS  Google Scholar 

  • Bioulac B, Guerin J, Henry P, Loiseau P: Physiologie du système nerveux autonome. Encycl Med-Chir (Paris), Neurologie 17802, B10 (4.2.07), 1977

  • Buller AJ, Eccles JC, Eccles RM: Differentiation of fast and slow muscles in the cat hind limb. J Physiol (Lond) 150:399–416, 1960

    Article  CAS  Google Scholar 

  • Burke R: Motor unit types of cat triceps surae muscle. J Physiol (Lond), 193:141–160, 1967

    Article  CAS  Google Scholar 

  • Brooks VB, Stoney SD: Motor mechanisms: the role of the pyramidal system in motor control. Am Rev Physiol 33:337–392, 1971

    Article  CAS  Google Scholar 

  • Clarac F, Ayers J: La marche des crustacés. J Physiol (Paris) 33:523–542, 1977

    Google Scholar 

  • Coghill GE: Anatomy and the problem of behavior. Cambridge (Mass): 1929

  • Curtis DRA, Eccles RM: The excitation of Renshaw cells by pharmacological agents applied electrophoretically. J Physiol (Lond) 141:435–445, 1958

    Article  CAS  Google Scholar 

  • Curtis DRA, Duggan AW, Felix D, Johnston GAR: Bicuculline an antagonist of GABA and synaptic inhibition in the spinal cord of the cat. Brain Res 32:69–96, 1971

    Article  CAS  PubMed  Google Scholar 

  • Curtis DRA, Duggan AW, Felix D, Johnston GAR, Tebecis AK, Watkins JC: Excitation of mammalian central neurones by acidic amino acids. Brain Res 41:283–301, 1972

    Article  CAS  PubMed  Google Scholar 

  • Eccles I, Eccles R, Lundberg A: The convergence of monosynaptic excitatory afferents on to many different species of alpha motoneurones. J Physiol (Lond) 137:22–50, 1957

    Article  CAS  Google Scholar 

  • Eccles JC, Fatt P, Koketsu K: Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. J Physiol (Lond) 126:524–562, 1954

    Article  CAS  Google Scholar 

  • Eccles J, Eccles R, Lundberg A: The action potentials of the alpha motoneurones supplying fast and slow muscles. J Physiol (Lond) 142:275–291, 1958

    Article  CAS  Google Scholar 

  • Engberg I: Plantar reflexes in cat. Experientia 19:487–488, 1963

    Article  CAS  PubMed  Google Scholar 

  • Evarts EV: Relation of pyramidal tract activity to force exerted during voluntary movement. J Neurophysiol 31:14–27, 1968

    CAS  PubMed  Google Scholar 

  • Evarts EV, Tanji J: Gating of motor cortex reflexes by prior instruction. Brain Res 71:479–494, 1974

    Article  CAS  PubMed  Google Scholar 

  • Fourtner CR, Evoy WH: Nervous control of walking in the crab Cardisoma guanhumi. IV. Effects of myochordotonal organ ablation. J Comp Physiol 83:319–329, 1973

    Article  Google Scholar 

  • Frank K, Fuortes MGF: Unitary activity of spinal interneurones of cats. J Physiol (Lond) 131:424–435, 1956

    Article  CAS  Google Scholar 

  • Granit R, Henatsch H, Steg G: Tonic and phasic ventral horn cells differentiated by post-tetanic potentiation in cat extensors. Acta Physiol Scand 37:114–126, 1956

    Article  CAS  PubMed  Google Scholar 

  • Granit R: The basis of motor control, pp 201–247. London, New York: Academic Press 1970

    Google Scholar 

  • Grillner S: Locomotion in vertebrates: central mechanisms and reflex interaction. Physiol Rev 55:247–304, 1975

    CAS  PubMed  Google Scholar 

  • Guérin J, Bioulac B, Loiseau P, Henry P: Anatomie du système nerveux autonome. Encycl Med-Chir (Paris) Neurologie 17800 B10 (4.207) 1977

  • Hagbarth K: Excitatory and inhibitory skin areas for flexor and extensor motoneurones. Acta Physiol Scand 26, suppl 94, 58 pp, 1952

  • Hammond PH: The influence of prior instruction to the subject on an apparently neuromuscular response. J Physiol (Lond) 4:17–18, 1956

    Google Scholar 

  • Hökfelt T, Kellerth JO, Nilsson G, Pernow B: Experimental immunohistochemical studies on the localization and distribution of substance P in cat primary sensory neurons. Brain Res 100:235–252, 1975

    Article  PubMed  Google Scholar 

  • Hongo T, Jankowska E, Lundberg A: The rubrospinal tract. II. Facilitation of interneuronal transmission paths to motoneurones. Exp Brain Res 7:344–364, 1969 b

    CAS  PubMed  Google Scholar 

  • Kennedy D, Davis WJ: The organization of invertebrate motor system. In: Handbook of physiology, ER Kandel, ed, vol. 3, Neurophysiology, 2nd edol. Bethesda: American Physiological Society 1977

    Google Scholar 

  • Krnjevic K: Chemical nature of synpatic transmission in vertebrates. Physiol Rev 54, No 2, 418–540, 1974

    CAS  Google Scholar 

  • Kuffler SW, Hunt CC, Quilliam JP: Function of medullated small-nerve fibers in mammalian ventral roots: efferent muscle spindle innervation. J Neurophysiol 14:29–54, 1951

    CAS  PubMed  Google Scholar 

  • Lamarre Y, Bioulac B, Jacks B: Activity of precentral neurones in conscious monkeys: effects of deafferentation and cerebellar ablation. J Physiol (Paris) 74:253–264, 1978

    CAS  Google Scholar 

  • La Motte C, Peri CB, Snyder AH: Opiate receptor binding in primate spinal cord: distribution and changes after dorsal root section. Brain Res 112:407–412, 1976

    Article  Google Scholar 

  • Laporte Y, Lloyd D: Nature and significance of the reflex connections established by large afferents fibers of muscular origin. Am J Physiol 169:602–621, 1952

    Google Scholar 

  • Laporte Y: L'activité réflexe de la moelle épinière. In: Physiologie, livre deuxième, Ch. Kayser, ed, p 376a-376ay. Paris: Masson 1976

    Google Scholar 

  • Le Bars D: Enkephalines et messages douloureux. La Recherche 85:72–76, 1978

    Google Scholar 

  • Lee RG, Tatton WG: Motor responses to sudden limb displacement in primates with specific CNS lesions and in human patients with motor system disorders. Can J Neurol Sci 2:285–293, 1975

    Article  CAS  PubMed  Google Scholar 

  • Liddel EGT, Sherrington CS: Reflexes in responses to stretch (myotatic reflex). Proc R Soc Lond [Biol] 96:212–242, 1924

    Article  Google Scholar 

  • Llinas R: Mechanisms of supraspinal actions upon spinal cord activities. Difference between reticular and cerebellar inhibitory actions upon alpha extensor motoneurones. J Neurophysiol 27:1117–1126, 1969

    Google Scholar 

  • Lloyd D: Reflex action in relation to the pattern and peripheral source of afferent stimulation. J Neurophysiol 6:111–119, 1943

    Google Scholar 

  • Lloyd D: Conduction and synaptic transmission of reflex response to stretch in spinal cats. J Neurophysiol 9:439–444, 1946

    CAS  PubMed  Google Scholar 

  • Lundberg A: Supraspinal control of transmission in reflex paths to motoneurones and primary afferents. In: Progress in brain research, 12, Physiology of spinal neurons, JC Eccles, P Schade, eds, pp 197–219. Stockholm, Amsterdam: Elsevier 1964

    Google Scholar 

  • Lundberg A: Supraspinal control of transmission in spinal reflex pathways. In: Recent advances in clinical neurophysiology. Electroencephalogr Clin Neurophysiol, Suppl 25, 35–46, 1967

    Google Scholar 

  • Manni E, Henatsh HD, Dow RS: 1 — Linked and independant responses of tonicα andγ hind limbs motoneurons to deep cerebellar stimulation. 2 — Effects of loop interruption or cerebellar control of individualα motoneurons stretch reflexes. J Neurophysiol 27:172–209, 1964

    PubMed  Google Scholar 

  • Massion J: Intervention des voies cérébello-corticales et corticocérébelleuses dans l'organisation et la régulation du mouvement. J Physiol (Paris) 67:117–170, 1973

    Google Scholar 

  • Massion J: Le système pyramidal: données récentes. In: Du contrôle moteur à l'organisation du geste. H Hecaen, M Jeannerod, eds, pp 31–51. Paris: Masson 1978

    Google Scholar 

  • Matthews PBC: Mammalian muscle receptors and their central actions. London: Edward Arnold Ltd 1972

    Google Scholar 

  • Matthews PBC: Muscles spindles and their motor control. Physiol Rev 44:219–288, 1964

    CAS  PubMed  Google Scholar 

  • Melville Jones G, Watt DGC: Observation on the control of stepping and hopping movements in man. J. Physiol (Lond) 219:709–727, 1971

    Article  Google Scholar 

  • Merton PA: Speculations on the servo-control of movement. In: The spinal cord, GEW Walstenholme, ed, pp 247–255. London: Churchill 1953

    Google Scholar 

  • Milner-Brown HS, Stein RB, Lee RG: Synchronization of human motor units: possible roles of exercise and supraspinal reflexes. Electroencephalogr Clin Neurophysiol 38:245–254, 1975

    Article  CAS  PubMed  Google Scholar 

  • Neale JH, Barker JL: Enkephalin — containing neurons visualized in spinal cord cell cultures. Science 201:467–469, 1978

    Article  CAS  PubMed  Google Scholar 

  • Nyberg-Hansen R, Brodal A: Sites of termination of corticospinal fibers in the cat. An experimental study with silver impregnation methods. J Comp Neurol 120:369–391, 1963

    Article  CAS  PubMed  Google Scholar 

  • Oscarson O: Functionnal organization of spino-cerebellar paths. Handbook of sensory physiology. II. Somato-sensory system, A Iggo, ed. Berlin: Springer 1973

    Google Scholar 

  • Otsuka M, Konishi S: Electrophysiological and neurochemical evidence for substance P as a transmitter of primary sensory neurons. In: Substance P, V von Euler, B Pernow, eds. New York: Raven Press 1976

    Google Scholar 

  • Pearson K: The control of walking. Sci Am 33:72–86, 1976

    Article  Google Scholar 

  • Phillips CG: Motor apparatus of the baboon's hand. Proc Roy Soc [B] 173:183–198, 1969

    Google Scholar 

  • Pollock LI, Davis L: Ischemic decerebration. J Comp Neurol 50:377–390, 1930

    Article  Google Scholar 

  • Rethelyi M, Szentagothai J: The large synaptic complexes in the substantia gelatinosa. Exp Brain Res 7:258–274, 1969

    Article  CAS  PubMed  Google Scholar 

  • Rethelyi M, Szentagothai J: Distribution and connections of afferent fibers in the spinal cord. In: Handbook of sensory physiology, vol. II. Somato-sensory system. Berlin: Springer 1973

    Google Scholar 

  • Rexed B: The cytoarchitectonic organization of the spinal cord in the cat. J Comp Neurol 96, 3:415–495, 1952

    Article  Google Scholar 

  • Romer AS: The vertebrate body, 4th ed. Philadelphia: Saunders, 1970

    Google Scholar 

  • Ryall RW, Kelly JS: Iontophoresis and transmitter mechanisms in the mammalian central nervous system. Amsterdam, New York: Elsevier-North-Holland Biomedical Press 1978

    Google Scholar 

  • Schapovalov AI, Kurchavyi GG: Effects of transmembrane polarization and TEA injection on monosynaptic actions from motor cortex, red nucleus, and group Ia afferents on lumbar motoneurons in the monkey. Brain Res 82:49–67, 1974

    Article  Google Scholar 

  • Scheibel ME, Scheibel AB: Terminal pattern in cat spinal cord. III. Primary afferent collaterals. Brain Res 13:417–443, 1969

    Article  CAS  PubMed  Google Scholar 

  • Sedan R, Lazorthes Y: La neurostimulation chronique. Neurochirurgie 24, suppl 1, 1978

  • Selverston AI: Neural circuity underlying oscillatory motor output. J Physiol (Paris) 73:463–470, 1977

    CAS  Google Scholar 

  • Sherrington CS: Decerebrate rigidity and reflex coordination of movements. J Physiol (Lond) 22:310–340, 1897

    Google Scholar 

  • Sherrington CS: The integrative action of the nervous system. New Haven: Yale University Press 1906

    Google Scholar 

  • Sherrington CS: Reflex inhibition as a factor in the coordination of movements and posture. Q J Exper Physiol 6:251–310, 1913

    Article  Google Scholar 

  • Shik ML, Severin EV, Orlovski GN: Control of walking and running by means of electrical stimulation of the mid-brain. Biophysics 2:756–765, 1966

    Google Scholar 

  • Simon EJ: Le récepteur de la morphine. La Recherche 78:416–423, 1973

    Google Scholar 

  • Szentagothai J: The anatomy of integrative units in the nervous system. In: Recent developments of neurobiology in Hungary. Budapest: Akademiai Kiado 1967

    Google Scholar 

  • Szentagothai J, Arbib A: Conceptual models of neural organization. Cambridge (Mass), London: The MIT Press 1974

    Google Scholar 

  • Terzuolo CA: Cerebellar inhibitory and excitatory actions upon spinal extensor motoneurons. Arch Ital Biol 97:136–139, 1959

    Google Scholar 

  • Tokizane T, Kawamata K, Tokizane H: Two types of motor units in human muscles. Jap J Physiol 2:232–247, 1952

    Article  CAS  Google Scholar 

  • Truex RC, Taylor M: Gray matter lamination of the human spinal cord. Anat Rec 2:160–502, 1968

    Google Scholar 

  • Viala D, Buser P: The effects of DOPA and 5-HTP on efferent rythmic discharges in hind limb nerves in the rabbit. Exp Brain Res 12:437–443, 1969

    Article  CAS  Google Scholar 

  • Werman R, Davidoff RA, Aprison MH: Inhibition of motoneurones by iontophoresis of glycine. Nature 214:681–683, 1967

    Article  CAS  PubMed  Google Scholar 

  • Wiesendanger M: Input from muscle and cutaneous nerves of the hand and forearm to neurones of the precentral stretch reflexes. J Neurophysiol 27:172–209, 1964

    Google Scholar 

  • Wiesendanger M: Programmation centrale et contrôle réflexe des mouvements. In: Du contrôle moteur à l'organisation du geste, H Hecaen, M Jeannerod, eds, pp 73–78. Paris: Masson 1978

    Google Scholar 

  • Wiesendanger M, Ruegg DG, Lucier GE: Why transcortical reflexes? Can J Neurol Sci 2:295–301, 1975

    Article  CAS  PubMed  Google Scholar 

  • Zieglsgangsberger W, Puil EA: Actions of glutamic acid on spinal neurones. Exp Brain Res 17:35–49, 1973

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guérin, J., Bioulac, B. Organisation anatomique et physiologique des activités motrices de la moelle épinière. Anat. Clin 1, 267–289 (1979). https://doi.org/10.1007/BF01654583

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01654583

Mots clés

Navigation