Skip to main content

Advertisement

Log in

The experimental and clinical use of immune-modulating drugs in the prophylaxis and treatment of infections

Die experimentelle und klinische Anwendung immunmodulierender Substanzen in der Prophylaxe und Therapie von Infektionen

  • Published:
Infection Aims and scope Submit manuscript

Summary

Therapeutic agents capable of stimulating immune responses could be of great value in the prophylaxis and treatment of infectious diseases. Three classes of compounds, each representing a separate approach to the goal of immune stimulation, are discussed with respect to recent experimental and clinical findings. The action of microbial structures and their derivatives can be understood on the basis of “acquired cellular immunity”, a phenomenon first described in connection with infections by mycobacteria and other intracellular organisms. In contrast, there is hardly a common denominator for synthetic compounds which are currently used as immune-stimulatory agents. Substances which influence purine metabolism in lymphocytes on the one hand and histamine H2 blockers such as cimetidine on the other hand seem to represent the most promising developments in this field to date. Products of immune cells such as transfer factor and lymphokines form the third and possibly most important group of immune-stimulating agents. Current experimental and clinical trends in this field are briefly described. It is suggested that the delineation of the mechanism of action of lymphokines will open the door to the identification or synthesis of artificial agonists and antagonists as has been the case in the pharmacology of the endocrine and nervous systems.

Zusammenfassung

Die Verfügbarkeit von Substanzen mit immunstimulierenden Eigenschaften hätte für die Therapie und Prophylaxe von Infektionskrankheiten erhebliche potentielle Bedeutung. In der vorliegenden Arbeit wird ein Überblick über den derzeitigen Stand experimenteller und klinischer Arbeiten auf dem Gebiet der Immunstimulation gegeben. Dabei werden drei prinzipiell voneinander verschiedene Ansätze zur Erreichung des Ziels Immunstimulation beschrieben. Jeder dieser Ansätze ist durch eine Reihe von Substanzen repräsentiert. Die Wirkungsweise mikrobieller Inhaltstoffe oder von ihnen abgeleiteter Derivate kann auf den gemeinsamen Nenner der „erworbenen zellulären Immunität” zurückgeführt werden. Dieses Phänomen wurde zunächst im Zusammenhang mit Infektionen durch Mykobakterien und andere intrazelluläre Erreger beschrieben. Im Gegensatz dazu läßt sich für die verschiedenen Synthetika, die heute als Immunstimulantien Verwendung finden, kaum eine gemeinsame mechanistische Grundlage nennen. Die interessantesten Entwicklungen auf diesem Gebiet betreffen zwei Gruppen von Verbindungen: einerseits Substanzen, die den Purinstoffwechsel in Lymphozyten beeinflussen, und andererseits Medikamente, die Histamin H2-Rezeptoren blockieren, wie zum Beispiel Cimitidin. Produkte von Immunzellen, wie Transferfaktor und Lymphokine, bilden die dritte und vielleicht wichtigste Gruppe immunstimulierender Agenzien. Wichtig gegenwärtig zu beobachtende Entwicklungen auf diesem Gebiet werden kurz geschildert. Die Aufklärung der immunologischen und biochemischen Wirkunksmechanismen der Lymphokine wird die Bemühungen zur Herstellung immunstimulierender Verbindungen auf eine neue Grundlage stellen. In Analogie zur Entwicklung der Pharmakologie des zentralen Nervensystems und des endokrinen Systems wäre auch im Bereich der Immunologie von der Synthese künstlicher Agonisten und Antagonisten der Lymphokine viel für die Therapie der Infektionskrankheiten zu erwarten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  1. Suter, E. Interaction between phagocytes and pathogenic microorganisms. Bacteriol. Rev. 20 (1956) 94–132.

    Google Scholar 

  2. Nathan, C., Nogueiras, N., Juanbghanich, C., Ellis, J., Cohn, Z. Activation of macrophagesin vivo andin vitro. J. Exp. Med. 149 (1979) 1056–1068.

    Google Scholar 

  3. Ruch, W., Cooper, P. H., Baggiolini, M. Assay of H2O2 production by macrophages and neutrophils with homovanillic acid and horse-radish peroxidase. J. Immunol. Methods 63 (1983) 347–357.

    Google Scholar 

  4. Pullinger, E. J.: The influence of tuberculosis on the development ofBrucella abortus infection. J. Hyg. Comb. (1936) 456.

  5. Clark, I. A., Allison, A. C., Cox, F. E.: Protection of mice against babesia and plasmodium with BCG. Nature (1976) 309–311.

  6. Clark, I. A., Wills, E. J., Richmond, J. E., Allison, A. C. Suppression of babesiosis in BCG-infected mice and its correlation with tumor inhibition. Infect. Immun. 17 (1977) 430–438.

    Google Scholar 

  7. Coppel, S., Youmans, G. P. Specificity of the anamnestic response produced byListeria monocytogenes orMycobacterium tuberculosis to challenge withListeria monocytogenes. J. Bacteriol. 97 (1969) 127–133.

    Google Scholar 

  8. Howard, J. G., Biozzi, G., Halpern, B. N., Stiffel, C., Mouton, D. The effect ofMycobacterium tuberculosis (BCG) infection on the resistance of mice to bacterial endotoxin andSalmonella enteritidis infection. Br. J. Exp. Pathol. 40 (1959) 281.

    Google Scholar 

  9. Mackaness, G. B. Resistance to intracellular infection. J. Infect. Dis. 123 (1971) 439–445.

    Google Scholar 

  10. Nyka, W. Enhancement of resistance to tuberculosis in mice experimentally infected withBrucella abortus. Am. Rev. Tuberc. 73 (1956) 251.

    Google Scholar 

  11. Mackaness, G. B. The immunologic basis of acquired cellular resistance. J. Exp. Med. 120 (1964) 105–120.

    Google Scholar 

  12. Ruco, L. P., Meltzer, M. S. Macrophage activation for tumor cytotoxicity: tumoricidal activity by macrophages from C3H/HeJ mice requires at least two activation stimuli. Cell. Immunol. 41 (1978) 35–51.

    Google Scholar 

  13. Simon, H. B., Sheagren, J. N. Enhancement of macrophage bactericidal capacity by antigenically stimulated immune lymphocytes. Cell. Immunol. 4 (1972) 163.

    Google Scholar 

  14. North, R. J. The concept of the activated macrophage. J. Immunol. 121 (1978) 806–808.

    Google Scholar 

  15. Ruco, L. P., Meltzer, M. S. Macrophage activation for tumor cytotoxicity: induction of tumoricidal macrophages by supernatants of PPD-stimulated bacillus Calmette-Guérin-immune spleen cell cultures. J. Immunol. 119 (1977) 889–896.

    Google Scholar 

  16. Sone, S., Fidler, I. J. Synergistic activation by lymphokines and muramyl dipeptide of tumoricidal properties in rat alveolar macrophages. J. Immunol. 125 (1980) 2454–2460.

    Google Scholar 

  17. Wing, E. J., Gardner, I. D., Ryning, F. W., Remington, J. S. Dissociation of effector functions in populations of activated macrophages. Nature 268 (1977) 642–644.

    Google Scholar 

  18. Hibbs, J. B., Jr., Remington, J. S., Stewart, C. C. Modulation of immunity and host resistance by microorganisms. Pharmacol. Ther. 8 (1980) 37–69.

    Google Scholar 

  19. Cummings, N. P., Pabst, M. J., Johnston, R. B., Jr. Activation of macrophages for enhanced release of superoxide anion and greater killing ofCandida albicans by injection of muramyl dipeptide. J. Exp. Med. 152 (1980) 1659–1669.

    Google Scholar 

  20. Werb, Z., Chin, J. R. Apoprotein E is synthesized and secreted by resident and thioglycollate-elicited macrophages but not by pyran copolymer- or bacillus Calmette-Guérin-activated macrophages. J. Exp. Med. 158 (1983) 1272–1293.

    Google Scholar 

  21. Mayer, P., Hamberger, H., Drews, J. Differential effects of ubiquinone Q7 and ubiquinone analogs on macrophage activation and experimental infections in granulocytopenic mice. Infection 8 (1981) 256–261.

    Google Scholar 

  22. Lederer, E. Synthetic immunostimulants derived from the bacterial cell wall. J. Med. Chem. 23 (1980) 819–825.

    Google Scholar 

  23. McAdam, K. P. W. J., Foss, N. T., Garcia, C., DeLellis, R., Chedid, L., Rees, R. J. W., Wolff, S. M. Amyloidosis and the serum amyloid A protein response to muramyl dipeptide analogs and different mycobacterial species. Infect. Immun. 39 (1983) 1147–1154.

    Google Scholar 

  24. Ferguson, T. A., Krieger, N. J., Pesce, A., Michael, J. G. Enhancement of antigen-specific suppression by muramyl-dipeptide. Infect. Immun. 39 (1983) 800–806.

    Google Scholar 

  25. Thienpont, D., Vanparus, O. F. J., Raeymaekers, A. H. M., Vandenberk, J., Demoen, P. J. A., Allewun, F. T. N., Marsboom, R. P. H., Niemegeers, C. J. E., Schellekens, K. H. L., Janssen, P. A. J. Tetramisole (R8299), a new potent broad spectrum anthelminthic. Nature 209 (1966) 1084–1086.

    Google Scholar 

  26. Renoux, G., Renoux, M. Effect immunostimulant d'un imidothiazole dans l'immunisation des souris contre l'infection parBrucella abortus. C. R. Acad. Sci. 272 D (1971) 349–350.

    Google Scholar 

  27. Renoux, G., Renoux, M., Teller, M. N., McMahon, S., Guillaume, J. M. Potentiation of T-cell mediated immunity by levamisole. Clin. Exp. Immun. 25 (1976) 288–296.

    Google Scholar 

  28. Renoux, G., Renoux, M. Antigenic competition and non specific immunity after a ricksettsial infection in mice: restoration of antibacterial immunity by phenyl-imidiothiazole treatment. J. Immun. 109 (1972) 761–765.

    Google Scholar 

  29. Fischer, G. W., Podgore, J. K., Bass, J. W., Kelley, J. L., Kobayashi, G. Y. Enhanced host defense mechanisms with levamisole in suckling rats. J. Infect. Dis. 132 (1975) 578–581.

    Google Scholar 

  30. Renoux, G., Renoux, M. Restauration par le phénylimidothiazole de la réponse immunologique des souris agées. C. R. Acad. Sci. 274 D (1972) 3034–3035.

    Google Scholar 

  31. Renoux, G. Modulation of immunity by levamisole. Pharmacol. Ther. A 2 (1978) 397–423.

    Google Scholar 

  32. Hadden, J. W. Mechanisms of tissue injury with reference to rheumatoid arthritis. In:Perper, R. J. (ed.): Cyclic nucleotides in lymphocyte function. New York Academy of Science 256 (1975) 352–364.

    Google Scholar 

  33. Merluzzi, V. J., Kaiser, C. W., Moolten, F. L., Cooperband, S. R., Levinsky, N. G. Stimulation of mouse spleen cellsin vitro by levamisole. Fed. Proc. 34 (1975) 1004.

    Google Scholar 

  34. Merluzzi, V. J., Badger, A. M., Kaiser, C. W., Cooperband, S. R. In vitro stimulation of murine lymphoid cell cultures by levamisole. Clin. Exp. Immun. 32 (1975) 486–492.

    Google Scholar 

  35. Woods, W. A., Fliegelmann, M. J., Chirigos, M. A. Effect of levamisole (NSC-177023) on DNA synthesis by lymphocytes from immunosuppressed C57BL mice. Cancer Chemother. Rep. 59 (1975) 531–536.

    Google Scholar 

  36. Symoens, J., Decree, W. F., Van Bever, M., Janssen, P. A. J. Levamisole. In:Goldberg, M. (ed.): Pharmacological and biochemical properties of drug substances. Vol. 2 American Pharmaceutical Association, Washington, D.C. 1979 pp. 407–464.

    Google Scholar 

  37. Veys, E. M., Mielants, H., Symoens, J., Vetter, G., Huskisson, E. C., Scott, J., Felix-Davies, D. D., Wilkinson, B., Rosenthal, M., Vischer, T. L., Gerster, J. C. Multicentre study group report: a multicentre randomized double-blind study comparing two dosages of levamisole in rheumatoid arthritis. J. Rheumatol. Suppl. 4 (1978) 5–10.

    Google Scholar 

  38. Veys, E. M., Symoens, J. Immunopharmacologic therapy of connective tissue diseases. In:Hadden, J., Chedid, L., Mullen, P., Spreafico, F. (eds.): Advances in immuno-pharmacology. Vol. 1, Pergamon Press, Oxford 1981, pp. 140–147.

    Google Scholar 

  39. Veys, E. M., Mielants, H., Verbruggen, G., Dhondt, E., Goethals, L., Cherouthre, L., Buelens, H. Levamisole as basic treatment of rheumatoid arthritis: longterm evaluation. J. Rheumatol. 8 (1981) 44–56.

    Google Scholar 

  40. Feldmann, J. L., Mery, C., Amor, B., Kahan, A., de Gery, A., Delbarre, F. Effectiveness of levamisole in rheumatoid arthritis: immune changes and long-term results. Scand. J. Rheumatol. 10 (1981) 1–8.

    Google Scholar 

  41. Van Eygen, M., Znamensky, P. Y., Heck, E., Raymaekers, I. Levamisole in prevention of recurrent upper respiratory-tract infections in children. Lancet II (1976) 382–385.

    Google Scholar 

  42. Singh, M. M., Kumar, P., Malaviya, A. N., Kumar, R. Levamisole as an adjunct in the treatment of pulmonary tuberculosis. Am. Rev. Respir. Dis. 123 (1981) 277–279.

    Google Scholar 

  43. Sher, R., Wadee, A. A., Joffe, M., Kok, S. H., Imkamp, F. M. J. H., Simson, E. W. Thein vivo andin vitro effects of levamisole in patients with lepromatous leprosy. Int. J. Lepr. 49 (1981) 159–166.

    Google Scholar 

  44. De Simone, C., Ricca, D., Sorice, F. In vitro influence of methisoprinol on human eosinophils. Int. J. Immunopharmacol. 4 (1982) 369.

    Google Scholar 

  45. Morin, A., Tello, D., Ballet, J. J. Activation mechanisms of human lymphocytes by the inosine derivative, isoprinosine. In:Hadden, J. W., Chedid, L., Dukor, P., Spreafico, F., Willoughby, D. (eds.): Advances in immuno-pharmacology. Vol. 2, Pergamon Press, Oxford 1983, pp. 809–816.

    Google Scholar 

  46. Nakamura, T., Miyasaka, N., Pope, R. M., Talal, N., Russell, I. J. Immunomodulation by isoprinosine: effects onin vitro immune functions of lymphocytes from humans with autoimmune diseases. Clin. Exp. Immunol. 52 (1983) 67–74.

    Google Scholar 

  47. Pasino, M., Bellone, M., Cornaglia, P., Tonini, G. P., Massimo, L. Methisoprinol effect on enriched B and T-lymphocyte populations stimulated with phytohemagglutinin. J. Immunopharmacol. 4 (1982) 101–108.

    Google Scholar 

  48. De Simone, C., Ricca, D., Lozzi, A., Lucci, L. Influence of methisoprinol on OKT3+, OKT4+, OKT8+, OKM1+, OKIA1+ cells. J. Immunopharmacol. 4 (1982) 291.

    Google Scholar 

  49. De Simone, C., Meli, D., Sbricoli, M., Rebuzzi, E., Koverech, A. In vitro effect of inosiplex on T-lymphocytes. 1. Influence on T-cells with receptors for IgG (T-gamma). J. Immunopharmacol. 4 (1982) 139–142.

    Google Scholar 

  50. Rey, A., Cupissol, D., Thierry, C., Esteve, E., Serrou, B. Modulation of human T-lymphocyte functions by isoprinosine. Int. J. Immunopharmacol. 5 (1981) 99–103.

    Google Scholar 

  51. Touraine, J. L., Hadden, J. W., Touraine, F. Isoprinosine-induced T-cell differentiation and T-cell suppressor activity in humans. Current Chemother. Infect. Dis. 1 (1980) 1735–1736.

    Google Scholar 

  52. Ballet, J. J., Morin, A., Schmitt, Ch., Agrapart, M. Effect of isoprinosine onin vitro proliferative responses of human lymphocytes stimulated by antigens. Int. J. Immunopharmacol. 4 (1982) 151–157.

    Google Scholar 

  53. Galli, M., Lazzarin, A., Moroni, M., Zanussi, C. Inosiplex in recurrent herpes simplex infections. Lancet II (1982) 331–332.

    Google Scholar 

  54. Charieras, J. L., Plassart, H. Etude en double-insu de 59 cas de rougeole sévère traités par isoprinosine. Méd. Trop. 42 (1982) 316–318.

    Google Scholar 

  55. Jones, C. E., Dyken, P. R., Huttenlocher, P. R., Jarbour, J. T., Maxwell, K. W. Inosiplex therapy in subacute sclerosing panencephalitis. Lancet I (1982) 1034–1037.

    Google Scholar 

  56. DuRant R. H., Dyken, P. R., Swift, A. V. The influence of inosiplex treatment on the neurological disability of patients with subacute sclerosing panencephalitis. J. Pediatr. 101 (1982) 288–293.

    Google Scholar 

  57. Laude, J., Lesourd, B., Rancurel, B., Doumerc, S., Moulias, R. Isoprinosine trial in herpes zoster. Effects on delayed cutaneous hypersensitivity. Int. J. Immunopharmacol. 2 (1980) 195.

    Google Scholar 

  58. Chang, T. W., Heel, R. C. Ribavirin and inosiplex: a review of their present status in viral diseases. Drugs 22 (1981) 111–128.

    Google Scholar 

  59. Lesourd, R., Rancurel, G., Hureaux, J. M., Pompidou, A., Lacque, C., Demvil, D., Buge, A., Moulias, A. Immunological restorationin vivo andin vitro, isoprinosine therapy and prognosis of acute encephalitis. Int. J. Immunopharmacol. 2 (1980) 195.

    Google Scholar 

  60. Buge, A., Rancurel, G., Metzger, J., Ricard, A., Lesourd, B., Gardeur, D. Isoprinosine in treatment of acute viral encephalitis. Lancet II (1979) 691.

    Google Scholar 

  61. Hadden, J. W., Wybran, J. Immunopotentiators II. In:Hadden, J. W., Chedid, L., Mullen, P., Spreafico F. (eds.): Advances in immunopharmacology. Vol. 1, Pergamon Press, Oxford 1981, pp. 457–468.

    Google Scholar 

  62. Hadden, J. W., Giner-Sorolla, A. Isoprinosine and HPT 15392. In:Hersh, E. M., Chirigos, M. A., Mastrangelo, M. J. (eds.): Augmenting agents in cancer therapy. Raven Press, New York 1981, pp. 491–522.

    Google Scholar 

  63. Renoux, G., Wybran, J. Immunopotentiators II. In:Hadden, J. W., Chedid, L., Dukor, P., Spreafico, F., Willoughby, D. (eds.): Advances in immunopharmacology. Vol. 2, Pergamon Press, Oxford 1983, pp. 809–816.

    Google Scholar 

  64. Hirschorn, R. Metabolic defects and immunodeficiency disorders. N. Engl. J. Med. 308 (1983) 714–716.

    Google Scholar 

  65. Girot, R., Hamet, M., Perignon, J. L., Guesnu, M., Fox, R. M., Cartier, P., Durandy, A., Griscelli, C. Cellular immune deficiency in two siblings with hereditary orotic aciduria. N. Engl. J. Med. 308 (1983) 700–704.

    Google Scholar 

  66. Bennett, J., Zloty, P., McKneally, M. Cimetidine blocks the development of tumor-induced suppressor T-cell activity. J. Int. Immunopharmacol. 4 (1982) 280.

    Google Scholar 

  67. Gifford, R. M., Ferguson, R. M., Voss, B. V. Cimetidine reduction of tumour formation in mice. Lancet I (1981) 638–640.

    Google Scholar 

  68. Osband, M. E., Shen, Y. J., Schlesinger, M., Brown, A., Hamilton, D., Cohen, E., Lavin, P., McCaffrey, R. Successful tumour immunotherapy with cimetidine in mice. Lancet I (1981) 636–638.

    Google Scholar 

  69. Avella, J., Binder, H. J., Madsen, J. E., Askenase, P. W. Effect of histamine H2-receptor antagonists on delayed hypersensitivity. Lancet I (1978) 624–626.

    Google Scholar 

  70. Van der Spruy, S., Levy, D. W., Levin, W. Cimetidine in the treatment of herpesvirus infections. S. Afr. Med. J. 58 (1980) 112–116.

    Google Scholar 

  71. Presser, S. E., Blank, H. Cimetidine: adjunct in treatment of tinea capitis. Lancet I (1981) 108–109.

    Google Scholar 

  72. Jorizzo, J. L., Sams, W. M., Jegasothy, B. V., Olansky, A. J. Cimetidine as an immunomodulator: chronic mucocutaneous candidiasis as a model. Ann. Intern. Med. 92 (1980) 192–195.

    Google Scholar 

  73. Cristiano, P., Paradisi, F. Can cimetidine facilitate infection by oral route? Lancet II (1982) 45.

    Google Scholar 

  74. Amery, W., Renoux, G. Immunopotentiators I. In:Hadden, J., Chedid, L., Mullen, P., Spreafico, F. (eds.): Advances in immunopharmacology. Vol. 1, Pergamon Press, Oxford 1981, pp. 451–455.

    Google Scholar 

  75. Umezawa, H., Aoyagi, T., Suda, H., Hamada, M., Takeuchi, T. Bestatin, an inhibitor of aminopeptidase B produced by actinomycetes. J. Antibiot. 29 (1976) 97–99.

    Google Scholar 

  76. Mattsson, L., Blomgren, H., Holmgren, B., Jarstrand, C. Bestatin treatment for the correction of granulocyte dysfunction in patients with recurrent furunculosis. Infection 11 (1983) 205–207.

    Google Scholar 

  77. Bicker, U., Ziegler, A. E., Hebold, G. Investigations in mice on the potentiation of resistance to infection by a new immunostimulant compound. J. Infect. Dis. 139 (1979) 389–395.

    Google Scholar 

  78. Patterson, R., Horman, P., Van Metre, T. Immunotherapy — Immunomodulation. JAMA 248 (1982) 2759–2772.

    Google Scholar 

  79. Wilson, G. B., Metcalf, J. F., Fudenberg, H. H. Treatment ofMycobacterium fortuitum pulmonary infection with “transfer factor” (TF): New methodology for evaluating TF potency and predicting clinical response. Immunol. Immunopathol. 23 (1982) 478–491.

    Google Scholar 

  80. Spitler, L. E., Levin, A. S., Stites, D. P. The Wiskott-Aldrich syndrome: Results of transfer factor therapy. J. Clin. Invest. 52 (1972) 3216.

    Google Scholar 

  81. Steele, R. W., Myers, M. G., Vincent, M. M. Transfer factor for the prevention of varicella-zoster infection in childhood leukemia. N. Engl. J. Med. 303 (1980) 355–359.

    Google Scholar 

  82. Dwyer, J. M., Gerstenhaber, B. J., Dobuler, K. J. Clinical and immunologic response to antigen-specific transfer factor in drug-resistant infection withMycobacterium xenopi. Am. J. Med. 74 (1983) 161–168.

    Google Scholar 

  83. Simon, M. R., Salberg, D. J., Silva J., Jr., Ganji, S., Desai, S., Muller, B. F., Palutke, M. Atypical mycobacterium infection treated with dialyzable leukocyte extracts: evidence for antigenic specificity. Clin. Immunol. Immunopathol. 20 (1981) 123–128.

    Google Scholar 

  84. Hofschneider, P. H., Obert, H. J. Stand klinischer Interferonstudien in der Bundesrepublik Deutschland. Münch. Med. Wochenschr. 124 (1982) 911–914.

    Google Scholar 

  85. Scott, G. M., Phillpotts, R. J., Wallace, J., Secher, D. S., Cantell, K., Tyrrell, D. A. J. Purified interferon as protection against rhinovirus infection. Br. Med. J. 284 (1982) 1822–1825.

    Google Scholar 

  86. Arvin, A. M., Kushner, J. H., Feldman, S., Baehner, R. L., Hammond, D., Merigan, T. C. Human leukocyte interferon for the treatment of varicella in children with cancer. N. Engl. J. Med. 306 (1982) 761–765.

    Google Scholar 

  87. Levin, S., Hahn, T., Rosenberg, H., Bino, T., Ziona, N. Treatment of life-threatening viral infections with interferon-α: Pharmacokinetic studies in a clinical trial. Isr. J. Med. Sci. 18 (1982) 439–446.

    Google Scholar 

  88. Pace, J. L., Russell, S. W., Schreiber, R. D., Altman, A., Katz, D. H. Macrophage activation: priming activity from a T-cell hybridoma is attributable to interferon-gamma. Proc. Natl. Acad. Sci. USA 80 (1983) 3782–3786.

    Google Scholar 

  89. Gillis, S., Smith, K. A. Long term culture of tumour-specific cytotoxic cells. Nature 268 (1977) 154–156.

    Google Scholar 

  90. Metcalf, D. Regulation of granulocyte and monocyte-macrophage proliferation by colony stimulating factor (CSF): a review. Exp. Hematol. 1 (1973) 185–201.

    Google Scholar 

  91. Iscove, N. N., Roitsch, C. A., Williams, N., Guilbert, L. J. Molecules stimulating early red cell, granulocyte, macrophage and megakaryocyte precursors in culture: similarity in size, hydrophobicity and charge. J. Cell. Physiol. 82 Suppl. (1982) 65–78.

    Google Scholar 

  92. Burgess, A. W., Metcalf, D. The nature and action of granulocyte-macrophage colony stimulating factors. J. Am. Soc. Hematol. 56 (1980) 947–958.

    Google Scholar 

  93. Drews, J. Immunomodulation. In:Reeves, D. S., Geddes, A. M. (eds.): Recent advances in infection II. Churchill Livingstone, Edinburgh 1982, pp. 89–100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drews, J. The experimental and clinical use of immune-modulating drugs in the prophylaxis and treatment of infections. Infection 13 (Suppl 2), S241–S250 (1985). https://doi.org/10.1007/BF01644438

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01644438

Keywords

Navigation