Skip to main content

Advertisement

Log in

Monoclonal antibodies: Technology and application to gram-negative infections

Monoklonale Antikörper: Technologie und Anwendung bei gramnegativen Infektionen

  • Published:
Infection Aims and scope Submit manuscript

Summary

Monoclonal antibodies have obvious diagnostic and therapeutic applications in infectious diseases. The technology for producing these highly specific reagents is readily available and we have produced monoclonal antibodies against the core glycolipid (endotoxin) region of gram-negative bacilli and the O-antigens ofPseudomonas aeruginosa. These antibodies are protective by different mechanisms and more than one antibody against a bacterium may give enhanced protection. Use of antibodies plus antimicrobial therapy may yield optimal results.

Zusammenfassung

Die Bedeutung monoklonaler Antikörper für die Diagnostik und Behandlung von Infektionskrankheiten ist offenkundig. Für die Herstellung dieser hochspezifischen Reagentien stehen Technologien zur Verfügung; wir haben monoklonale Antikörper gegen die Glykolipid-Core-Region (Endotoxin) von gramnegativen Bakterien und gegen O-Antigene vonPseudomonas aeruginosa hergestellt. Diese Antikörper können über verschiedene Mechanismen schützend wirken, und die protektive Wirkung kann erhöht sein, wenn mehr als ein Antikörper gegen ein Bakterium vorhanden ist. Optimale Ergebnisse sind von einer Kombination von Antikörpern mit antimikrobieller Therapie zu erwarten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  1. Kohler, G., Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature (London) 256 (1975) 495–497.

    Google Scholar 

  2. Galfre, G., Milstein, C. Preparation of monoclonal antibodies: Strategies and procedures: In: Methods in enzymology. Academic Press, London 1981, pp. 3–46.

    Google Scholar 

  3. Kennet, R. H., McKearn, T. J., Bechtol, K. B. (eds.): Monoclonal antibodies. Plenum Press, New York 1980.

    Google Scholar 

  4. Cleveland, W. L., Wood, I., Erlanger, B. F. Routine large scale production of monoclonal antibodies in a protein free culture medium. J. Immunol. Methods 56 (1983) 221–234.

    Google Scholar 

  5. Ehrlich, P. H., Moyle, W. R. Cooperative immunoassays with mixed monoclonal antibodies. Science 221 (1983) 279–281.

    Google Scholar 

  6. Gigliotti, F., Insel, R. A. Protective human hybridoma antibody to tetanus toxin. J. Clin. Invest. 70 (1982) 1306–1309.

    Google Scholar 

  7. Young, L. S., Alam, S., Gascon, R.: Monoclonal antibody directed against the core glycolipid of enterobacterial endotoxin. Clin. Res. 30 (1982) 522 A.

    Google Scholar 

  8. Kirkland, T. N., Ziegler, E. J. An immunoprotective monoclonal antibody to lipopolysaccharide. J. Immunol. 132 (1984) 2590–2592.

    Google Scholar 

  9. Robertson, S. M., Frisch, C. F., Gulig, P. A., Kettmann, J. R., Johnston, K. H., Hansen, E. J. Monoclonal antibodies directed against a cell surface exposed outer membrane protein ofHaemophilus influenzae Type b. Infect. Immun. 36 (1982) 80–88.

    Google Scholar 

  10. Hunter, K. W., Jr., Fischer, G. W., Hemminy, V. G., Wilson, S. R., Hartzman, R. J., Woody, J. N. Antibacterial antibody of a human monoclonal antibody toHaemophilus influenzae Type b capsular polysaccharide. Lancet II (1982) 798–799.

    Google Scholar 

  11. Coates, A. R. M., Hewitt, J., Allen, B. W., Ivanizi, J., Mitchison, D. A. Antigenic diversity ofMycobacterium tuberculosis andMycobacterium bovis detected by means of monoclonal antibodies. Lancet II (1981) 167–169.

    Google Scholar 

  12. Tam, M. R., Buchanan, T. M., Sanstrom, E. G., Holmes, K. K., Knapp, J. S., Siadek, A. W., Nowinski, R. C. Serological classification ofNeisseria gonorrhoeae with monoclonal antibodies. Infect. Immun. 36 (1982) 1042–1053.

    Google Scholar 

  13. Moreno, C., Hewitt, J., Hastings, K., Brown, D. Immunologic properties of monclonal antibodies specific for meningococcal polysaccharides. J. Gen. Microbiol. 129 (1983) 2451–2456.

    Google Scholar 

  14. Hancock, R. E. W., Wieczorek, A. A., Mutharia, L. M., Poole, K. Monoclonal antibodies againstPseudomonas aeruginosa outer membrane antigens. Infect. Immun. 37 (1982) 166–171.

    Google Scholar 

  15. Young, L. S.: Functional activity of monoclonal antibodies against lipopolysaccharide antigens of gram-negative bacilli. Clin. Res. 32 (1984) 518 A.

    Google Scholar 

  16. Harris, M. C., Douglas, S. D., Kolski, G. G., Polin, R. A. Functional properties of anti-Group B streptococcal antibodies. Clin. Immunol. Immunopathol. 24 (1982) 342–349.

    Google Scholar 

  17. Egan, M. L., Pritchard, D. G., Dillon, H. D., Jr., Gray, B. M. Protection of mice from experimental infection with Type III Group B streptococcus using monoclonal antibodies. J. Exp. Med. 158 (1983) 1006–1011.

    Google Scholar 

  18. Robb, M., Nichols, J. C., Whoriskey, S. K., Murphy, J. R. Isolation of hybridoma cell lines and characterization of monoclonal antibodies against cholera enterotoxin and its subunits. Infect. Immun. 38 (1982) 267–272.

    Google Scholar 

  19. Young, L. S. Gram-negative sepsis. In:Mandell, G., Douglas, J. G., Bennet, J. E. (eds.): Principles and practice of infectious diseases. John Wiley and Sons, New York 1979, pp. 571–608.

    Google Scholar 

  20. Young, L. S., Stevens, P., Ingram, J. Functional role of antibody against “core” glycolipid ofEnterobacteriaceae. J. Clin. Invest. 56 (1975) 850–861.

    Google Scholar 

  21. Greisman, S. E., Dubuy, J. B., Woodward, C. L. Experimental gram-negative bacterial sepsis. Reevaluation of the ability of rough mutant antisera to protect mice. Proc. Soc. Exp. Biol. Med. 158 (1978) 482–490.

    Google Scholar 

  22. Rowe, S. N., Meadow, P. M. Structure of the core oligosaccharide from the lipopolysaccharide ofPseudomonas aeruginosa PACIR and its defective mutants. Eur. J. Biochem. 132 (1983) 329–337.

    Google Scholar 

  23. Young, L. S., Armstrong, D. Human immunity ofPseudomonas aeruginosa. 1.In vitro interaction of bacteria, polymorphonuclear leukocytes, and serum factors. J. Infect. Dis. 126 (1972) 257–276.

    Google Scholar 

  24. Levy, R., Miller, R. A. Tumor therapy with monoclonal antibodies. Fed. Proc. 42 (1983) 2650–2656.

    Google Scholar 

  25. Sears, H. F., Atkinson, B., Matis, J., Ernst, C., Herlyn, D., Steplewski, Z., Hayry, P., Koprowski, H. Phase I clinical trial of monoclonal antibody in treatment of gastrointestinal tumor. Lancet 1 (1982) 762–764.

    Google Scholar 

  26. Olsson, L., Kronstrom, H., Cambon-de Mouzon, A., Honsik, C., Brodin, T., Jakobsen, B. Antibody producing human-human hybridomas I. Technical aspects. J. Immunol. Methods 61 (1983) 17–32.

    Google Scholar 

  27. Kozbor, D., Lagarde, A. E., Roder, J. C. Human hybridomas constructed with antigen specific Epstein Barr virus transformed cell lines. Proc. Natl. Acad. Sci. USA 79 (1983) 6651–6656.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, L.S. Monoclonal antibodies: Technology and application to gram-negative infections. Infection 13 (Suppl 2), S224–S229 (1985). https://doi.org/10.1007/BF01644435

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01644435

Keywords

Navigation