Skip to main content
Log in

In vitro and in vivo effect of immunoglobulin G on the integrity of bacterial membranes

In vitro- und In vivo-Effekte von Immunglobulin G auf die Integrität bakterieller Membranen

  • The Sixth Sils Maria Symposium Non-Antibiotic Prevention And Treatment Of Infectious Diseases
  • Published:
Infection Aims and scope Submit manuscript

Summary

The interaction between a modified 7S immunoglobulin (MISG) and bacterial membranes was studied by adoptingin vitro as well asin vivo techniques. Preincubation ofEscherichia coli andPseudomonas aeruginosa with MISG resulted in a release of enzymatic markers from the periplasmic space, whereas no cytoplasmic or membrane-bound enzymes were liberated. Due to the interaction of MISG with the outer membrane of gram-negative rods, the bacteria became more susceptible to the antibacterial action of poorly penetrating penicillins because of a significantly increased rate of uptake. Thesein vitro effects were corroborated underin vivo conditions by adopting the granuloma pouch model. A single intravenous injection of MISG enhanced the therapeutic efficacy of mezlocillin againstE. coli; similarly, the antibacterial activity of penicillin G, oxacillin, cephalothin and cefamandole againstStaphylococcus aureus was augmented by MISG. Thesein vivo effects of MISG were not due to an increased rate of phagocytosis or complement activity. Thus, MISG sensitized bacteria to several β-lactam antibiotics by disorganizing their outer membrane.

Zusammenfassung

Die Interaktion zwischen einem modifizierten 7S Immunserumglobulin (MISG) und bakteriellen Membranen wurde sowohl unterIn vitro- als auchIn vivo-Bedingungen geprüft. Eine Präinkubation vonEscherichia coli undPseudomonas aeruginosa mit MISG resultierte in der Freisetzung von Enzymmarkern aus dem periplasmatischen Raum, wohingegen keine zytoplasmatischen oder zellwandgebundenen Enzyme freigesetzt wurden. Aufgrund der Interaktion von MISG mit der äußeren Membran gram-negativer Stäbchen wurden diese Bakterien empfindlicher gegenüber der antibakteriellen Wirkung von nur geringradig penetrierenden Penicillinen, da ihre Aufnahmerate signifikant erhöht wurde. DieseIn vitro-Effekte wurden auch unterIn vivo-Bedingungen unter Verwendung des Granuloma-Pouch Modells bestätigt. Eine einzige intravenöse MISG-Injektion erhöhte die therapeutische Effektivität von Mezlocillin gegenüberE. coli; in ähnlicher Weise wurde die antibakterielle Effektivität von Penicillin G, Oxacillin, Cephalothin und Cefamandol gegenüberStaphylococcus aureus durch MISG gesteigert. DieseIn vivo-Effekte sind nicht auf eine gesteigerte Phagozytoserate oder erhöhte Komplementaktivität zurückzuführen. Somit sensitiviert MISG Bakterien gegenüber mehreren β-Laktamantibiotika aufgrund einer Desintegration der äußeren Membran.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature

  1. Vandenbranden, M., de Loen, J. L., Jeener, R., Kanarek, L., Ruysschaert, J. M. Interactions of immunoglobulins with lipid mono- or bilayers and liposomes. Existence of two conformations of immunoglobulins of different hydrophobicities. Mol. Immunol. 8 (1981) 621–631.

    Google Scholar 

  2. Vandenbranden, M., Bauerjee, S., Vandenbussche, G., Ruysschaert, J. M. Lipid-immunoglobulin interaction in model membranes. Arch. Int. Physiol. Biochem. 89 (1981) BP15-BP16.

    Google Scholar 

  3. Vandenbranden, M., Kayser, G., Bauerjee, S., Ruysschaert, J. M. Immunoglobulin-lipid interaction. A model membrane study. Biochem. Biophys. Acta 685 (1982) 177–181.

    Google Scholar 

  4. Fachnormenausschuß Medizin (FN/Med) im DIN Deutsches Institut für Normung e. V. (1979). Methoden zur Empfindlichkeitsprüfung von bakteriellen Krankheitserregern (außer Mykobakterien) gegen Chemotherapeutika. DIN 58940.

  5. Drain, D., Harvey, E., Lawrence, A. J., Thomas, A. Mechanisms for albumin-mediated membrane damage. Eur. J. Biochem. 114 (1981) 239–245.

    Google Scholar 

  6. Garen, A., Levinthal, C. A fine-structure genetic and chemical study of the enzyme alkaline phosphatase ofE. coli. I. Purification and characterization of alkaline phosphatase. Biochem. Biophys. Acta 38 (1960) 470–483.

    Google Scholar 

  7. Perret, C. J. Iodometric assay of penicillinase. Nature 174 (1954) 1012–1013.

    Google Scholar 

  8. Dalhoff, A. Interaction of mezlocillin and cefoxitin againstProteus morganii in the granuloma pouch model. Eur. J. Clin. Microbiol. 1 (1982) 243–247.

    Google Scholar 

  9. Dalhoff, A., Brunner, H. Mode of interaction between immunoglobulin G and mezlocillin against β-lactamase producing bacteria. Arzneim. Forsch./Drug Res. 33 (1983) 1666–1671.

    Google Scholar 

  10. Torrani, A. Influence of inorganic phosphate in the formation of phosphatases byEscherichia coli. Biochim. Biophys. Acta 38 (1960) 460–479.

    Google Scholar 

  11. Pardee, A. B., Jacob, F., Monod, J. The genetic control and cytoplasmic expression of “inducibility” in the synthesis of β-galactosidase byE. coli. J. Mol. Biol. 1 (1959) 165–178.

    Google Scholar 

  12. Langdon, R. G. Glucose-6-phosphate dehydrogenase from erythrocytes. In:Colowick, S. P., Kaplan, N. O. (eds.): Methods in enzymology, Vol. 9. Academic Press, New York 1966, pp. 126–131.

    Google Scholar 

  13. Selye, H. Use of “granuloma pouch” technique in the study of antiphlogistic corticoids. Proc. Soc. Exp. Biol. Med. 82 (1953) 328–333.

    Google Scholar 

  14. Dalhoff, A., Frank, G., Luckhaus, G. The granuloma pouch: Anin vivo model for pharmacokinetic and chemotherapeutic investigations. I. Biochemical and histological characterization. Infection 10 (1982) 354–360.

    Google Scholar 

  15. Dalhoff, A., Frank, G., Luckhaus, G. The granuloma pouch: Anin vivo model for pharmacokinetic and chemotherapeutic investigations. II. Microbiological characterization. Infection 11 (1983) 41–46.

    Google Scholar 

  16. Garrod, L. P., Lambert, H. P., O'Grady, F. Antibiotic and chemotherapy. 4th Edition. Churchill Livingstone, Edinburgh 1973, pp. 257–274.

    Google Scholar 

  17. Nikaido, H., Nakae, T. The outer membrane of gram-negative bacteria. Adv. Microb. Physiol. 20 (1979) 163–250.

    Google Scholar 

  18. Vaara, M., Vaara, T. Polycations sensitize enteric bacteria to antibiotics. Antimicrob. Agents Chemother. 24 (1983) 107–113.

    Google Scholar 

  19. Schindler, M., Osborn, M. J. Interaction of divalent cations and polymyxin B with lipopolysaccharide. Biochemistry 18 (1979) 4425–4430.

    Google Scholar 

  20. Jonas, A. Interaction of phosphatidylcholine with bovine serum albumin. Specificity and properties of the complexes. Biochim. Biophys. Acta 427 (1976) 325–336.

    Google Scholar 

  21. Spector, A. A., Fletcher, J. E. Fatty acid binding by serum albumin. In:Peters, T., Sjöholm, J. (eds.): Albumin: structure, biosynthesis, function. Pergamon Press, Oxford 1977, pp. 51–60.

    Google Scholar 

  22. Drainas, D., Lawrence, A. J. Albumin mediates lysis of erythrocytes by bee venom phospholipase A2 activated with oleoyl imidazolide. FEBS Lett. 114 (1980) 93–97.

    Google Scholar 

  23. Condrea, E., Avi-Dor, Y., Mager, J. Mitochrondrial swelling and phospholipid splitting induced by snake venoms. Biochim. Biophys. Acta 110 (1965) 337–347.

    Google Scholar 

  24. Ziegler, F. D., Vazquez-Colon, L., Elliott, W. B., Taub, A., Gans, C. Alteration of mitochondrial function byBungarus fasciatus venom. Biochemistry 4 (1965) 555–560.

    Google Scholar 

  25. Augustin, J. M., Parsa, B., Elliott, W. B. Structural and respiratory effects ofAgkistrodon piscivorus phospholipase A on rat liver mitochondria. Biochim. Biophys. Acta 197 (1970) 185–196.

    Google Scholar 

  26. Ahkong, Q. F., Fisher, D., Tampion, W., Lucy, J. A. The fusion of erythrocytes by fatty acids, esters, retinol and tocopherol. Biochem. J. 136 (1973) 147–155.

    Google Scholar 

  27. Gul, S., Smith, A. D. Haemolysis of washed human red cells by the combined action ofNaja naja phospholipase A2 and albumin. Biochim. Biophys. Acta 288 (1972) 237–240.

    Google Scholar 

  28. Gul, S., Smith, A. D. Haemolysis of intact human erythrocytes by purified cobra venom phospholipase A2 in the presence of albumin and Ca2+. Biochim. Biophys. Acta 367 (1974) 271–281.

    Google Scholar 

  29. Dalhoff, A. In vitro- undIn vivo-Untersuchungen zur Wirkung von Acylureido-Penicillinen mit Immunoglobulin G bei Problemkeimen. Münch. Med. Wochenschr. 125 Suppl. 2 (1983) 150–157.

    Google Scholar 

  30. Jaffe, A., Chabbert, Y. A., Semonin, O. Role of porin proteins Omp F and Omp C in the permeation of β-lactams. Antimicrob. Agents Chemother. 22 (1982) 942–948.

    Google Scholar 

  31. Dalhoff, A. Shift in serum sensitivity ofin vivo grownEscherichia coli — a preliminary report. In:Keusch, G. T., Wadström, T. (eds.): Experimental models of bacterial and parasitic infections. Elsevier Publishing Co., Inc., New York 1983, pp. 317–323.

    Google Scholar 

  32. Kroll, H. P.: Cell surface properties ofin vivo grownKlebsiella pneumoniae. Society for General Microbiology Quarterly 8 (1982) Part 5, Abstract P8.

  33. Dalhoff, A. The granuloma pouch. In:Sande, M. A., Zak, O. (eds.): Animal models in the evaluation of chemotherapy of infectious diseases. Academic Press, Inc., Ltd., London 1984, in press.

    Google Scholar 

  34. Harold, F. Antimicrobial agents and membrane permeability. Adv. Microbiol. Physiol. 4 (1970) 45–104.

    Google Scholar 

  35. Vaara, M. Increased outer membrane resistance to ethylene-diaminetetraacetate and cations in novel lipid A mutants. J. Bacteriol. 148 (1981) 426–434.

    Google Scholar 

  36. Carrol, S. F., Martinez, R. J. Antibacterial peptide from normal rabbit serum. 1. Isolation from whole serum, activity and microbial spectrum. Biochemistry 20 (1981) 5973–5981.

    Google Scholar 

  37. Buchanan-Davidson, D. J., Seastone, C. V., Stahmann, M. A. Action of synthetic polylysine on the growth and phagocytosis of bacteriain vitro. J. Bacteriol. 80 (1960) 590–594.

    Google Scholar 

  38. Modrzakowski, M. C., Cooney, M. H., Martin, L. E., Spitznagel, J. K. Bactericidal activity of fractionated contents from human polymorphonuclear leukocytes. Infect. Immun. 23 (1979) 587–591.

    Google Scholar 

  39. Weiss, J., Elsbach, P., Olson, J., Odeberg, H. Purification and characterization of a potent bactericidal and membrane-active protein from the granules of human polymorphonuclear leukocytes. J. Biol. Chem. 253 (1978) 2664–2672.

    Google Scholar 

  40. Hultmark, D., Steiner, H., Rasmuson, T., Boman, H. G. Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae ofHyalophora cecropia Eur. J. Biochem. 106 (1980) 7–16.

    Google Scholar 

  41. Ginsburg, J., Lahav, M., Giesbrecht, P. Effect of leukocyte hydrolases on bacteria. XVI. Activation by leukocyte factors and cationic substances on autolytic wall enzymes inStaphylococcus aureus: Modulation by anionic polyelectrolytes in relation to survival of bacteria in inflammatory exudates. Inflammation 6 (1982) 401–417.

    Google Scholar 

  42. Leive, L. Actinomycin sensitivity inEscherichia coli produced by EDTA. Biochem. Biophys. Res. Commun. 18 (1965) 13–17.

    Google Scholar 

  43. Dalhoff, A. Synergy between acylureidopenicillins and immunoglobulin G in experimental animals. Am. J. Med. 76 (1984) 91–100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalhoff, A. In vitro and in vivo effect of immunoglobulin G on the integrity of bacterial membranes. Infection 12, 214–220 (1984). https://doi.org/10.1007/BF01640908

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01640908

Keywords

Navigation