Skip to main content
Log in

Behavioral responses to chemical cues by bacteria

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Bacterial chemotaxis presents a model sensory system in which cells modulate the direction of rotation of their flagella in response to gradients of certain chemicals. The chemotactic machinery ofEscherichia coli is currently being systematically reduced to its individual components through the accomplishments of behavioral, physical, genetic, molecular genetic, and biochemical analyses. Thirteen of the so called “MCP-related” class of chemotaxis gene products are known. Transmembrane methyl-accepting chemotaxis proteins (MCPs) are important for the chemical sensing, signal generation, and sensory adaptation processes. Soluble chemotaxis proteins relay information from these MCPs to structural components of the flagella referred to as switch proteins. Emphasis here is on the separate roles each of these groups of chemotaxis proteins perform, as well as their protein-protein relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, J. 1969. Chemoreceptors in bacteria.Science 166:1588–1600.

    Google Scholar 

  • Aizawa, S-I. Dean, G.E., Jones, C. J., Macnab, R.M., andYamaguchi, S. 1985. Purification and characterization of the flagellar hook-basal body complex ofSalmonella typhimurium.J. Bacteriol. 161:836–849.

    Google Scholar 

  • Aksamit, R.R., andBacklund, P.S., 1983. Chemotaxis and methylation in a macrophage cell line.Surv. Immunol. Res. 2:150–154.

    Google Scholar 

  • Anraku, Y. 1968. Transport of sugars and amino acids in bacteria. I: Purification and specificity of the galactose- and leucine-binding proteins.J. Biol. Chem. 243:3116–3121.

    Google Scholar 

  • Arai, T. 1980. Effect of arsenate on Chemotactic behavior ofE. coli.J. Bacteriol. 145:803–807.

    Google Scholar 

  • Armstrong, J.B. 1972. AnS-adenosylmethione requirement for chemotaxis inEscherichia coli.Can. J. Microbiol. 18:1695–1701.

    Google Scholar 

  • Armstrong, J.B., andAdler, J. 1969. Location of genes for motility and chemotaxis on theEscherichia coli genetic map.J. Bacteriol. 97:156–161.

    Google Scholar 

  • Armstrong, J.B., Adler, J., andDahl, M.M. 1967. Nonchemotactic mutants ofEscherichia coli.J. Bacteriol. 93:390–398.

    Google Scholar 

  • Arora, D.K., Filonow, A.B, andLockwood, J.L. 1983. Bacterial chemotaxis to fungal propagules in vitro and in soil.Can. J. Microbiol. 29:1104–1109.

    Google Scholar 

  • Aswad, D., andKoshland, D.E. 1975. Isolation, characterization, and complementation ofsSalmonella typhimurium chemotaxis mutants.J. Mol. Biol. 97:225–235.

    Google Scholar 

  • Bartlett, D.H. andMatsumura, P. 1984. Identification ofEscherichia coli region IIIfla gene products and description of two new flagellar genes.J. Bacteriol. 160:577–585.

    Google Scholar 

  • Berg, H.C., andAnderson, R.A. 1973. Bacteria swim by rotating their flagellar filaments.Nature 245:380–382.

    Google Scholar 

  • Berg, H.C. andBrown, D.A. 1972. Chemotaxis inEscherichia coli analyzed by three dimensional tracking.Nature 239:500–504.

    Google Scholar 

  • Berg, H.C. andKhan, S. 1982. A model for the flagellar rotary motor, pp. 485–497,in H. Sund and C. Veeger (eds.). Mobility and Recognition in Ceil Biology. Walter de Gruyter, Berlin.

    Google Scholar 

  • Block, S.M., Segall, S.E., andBerg, H.C. 1982. Impulse response times in bacterial chemotaxis.Cell 31:215–226.

    Google Scholar 

  • Bollinger, J., Park, C., Harayama, S., andHazelbauer, G. 1984. Structure of the trg protein: Homologies with and differences from other sensory transducers ofEscherichia coli.Proc. Natl. Acad. Sci. U.S.A. 81:3287–3291.

    Google Scholar 

  • Boyd, A., Krikos, A. andSimon, M. 1981. Sensory transducers ofEscherichia coli are encoded by homologous genes.Cell 26:333–343.

    Google Scholar 

  • Boyd, A., Kendall, K., andSimon, M. 1983. Structure of the serine chemoreceptor inEscherichia coli.Nature 301:623–626.

    Google Scholar 

  • Callahan, A.M., andParkinson, J.S. 1985. Genetics of methyl-accepting chemotaxis proteins inEscherichia coli-cheD mutations affect the structure and function of thetsr transducer.J. Bacteriol. 161:96–104.

    Google Scholar 

  • Chet, I., andMitchell, R. 1976. Ecological aspects of microbial chemotactic behavior.Annu. Rev. Microbiol. 30:221–239.

    Google Scholar 

  • Clarke, S., andKoshland, D.E., Jr. 1979. Membrane receptors for aspartate and serine in bacterial chemotaxis.J. Biol. Chem. 254:9695–9702.

    Google Scholar 

  • Cleggs, D.O., andKoshland, D.E., Jr. 1984. The role of a signalling protein in bacterial sensing: Behavioral effects of increased gene expression.Proc. Natl. Acad. Sci. U.S.A. 81:5056–5060.

    Google Scholar 

  • Clegg, D.O., andKoshland, D.E., Jr. 1985. Identification of a bacterial sensing protein and effects of its elevated expression.J. Bacteriol. 162:398–405.

    Google Scholar 

  • Collins, A.L.T., andStocker, B.A.D. 1976.Salmonella typhimurium mutants in general chemotaxis.J. Bacteriol. 128:754–761.

    Google Scholar 

  • Coulton, J.W., andMurray, R.G.E. 1978. Cell envelope associations ofAquaspirillum serpens flagella.J. Bacteriol. 136:1037–1049.

    Google Scholar 

  • Cox, G.B., Downie, A., Longman, L., Senior, A.E., Ash, G., Fayle, D.R.H., andGibson, F. 1981. Assembly of the adenosine triphosphatase complex inEscherichia coli: assembly ofF O is dependent on the formation of specificF 1 subunits.J. Bacteriol. 148:30–42.

    Google Scholar 

  • Dahlquist, F.W., Lovely, P., andKoshland, D.E., Jr. 1972. Quantitative analysis of bacterial migration in chemotaxis.Nature (London). New Biol., 236:120–122.

    Google Scholar 

  • Dean, G.E., Aizawa, S., andMacnab, R.M. 1983.flaAII (motC, cheV) ofSalmonella typhimurium is a structural gene involved with energization and switching of the flagellar motor.J. Bacteriol. 154:84–91.

    Google Scholar 

  • Defranco, A.L., Parkinson, J.S., andKoshland, D.E., Jr. 1979. Functional homology of chemotaxis genes inEscherichia coli andSalmonella typhimurium.J. Bacteriol. 139:107–114.

    Google Scholar 

  • Depamphilis, M.L., andAdler, J. 1971. Fine structure and isolation of the hook-basal body complex of flagella fromEscherichia coli andBacillus subtilis.J. Bacteriol. 105:384–395.

    Google Scholar 

  • Downie, J.A., Gibson, F., andCox, G.B. 1979. Membrane adenosine triphosphatases of prokaryotic cells.Ann. R. Bioch. 48:103–131.

    Google Scholar 

  • Engebrecht, J., andSilvermann, M. 1984. Identification of genes and gene products necessary for bacterial bioluminescence.Proc. Natl. Acad. Sci. U.S.A. 81:4154–4158.

    Google Scholar 

  • Engelmann, T.W. 1983.Bacterium photomentricum ein Beitrag zur Vergleichenden Physiologie des Licht- und Farbensinnes.Pflsuegers Arch. Gesamte Physiol. Menschen Tiere 30:95–124.

    Google Scholar 

  • Freter, R., O'Brien, P.C.M., andMacsai, M.S. 1979. Effect of chemotaxis on the interaction of cholera vibrios with intestinal mucosa.Am. J. Clin. Nutr. 32:128–132.

    Google Scholar 

  • Fuentes, F.A., Biamon, E.J., andHazen, T.C. 1983. Bacterial chemotaxis to effluent from a rum distillery in tropical near shore coastal waters.Appl. Environ. Microbiol. 46:1438–1441.

    Google Scholar 

  • Galloway, R.J., andTaylor, B.L. 1980. Histidine starvation and adenosine-5'-triphosphate depletion in chemotaxis ofSalmonella typhimurium.J. Bacteriol. 144:1068–1075.

    Google Scholar 

  • Gitte, R.R., Rai, P.V., andPatil, R.B. 1978. Chemotaxis ofRhizobium species toward root exudate ofCicer ariatinum L.Plant Soil 50:553–566.

    Google Scholar 

  • Golden, J.W., Robinson, S.J., andHaselkorn, R. 1985. Rearrangement of nitrogen fixation genes during heterocyst differentiation in the cyanobacteriumAnabaena.Nature 314:419–423.

    Google Scholar 

  • Goldman, D.J., Worobec, S.W., Siegel, S.B., Hecker, R.V., andOrdal, G.W. 1982. Chemotaxis inBacillus subtilis: Effects of attractants on the level of MCP methylation and the role of demethylation in the adaptation process.Biochemistry 21:915–920.

    Google Scholar 

  • Goy, M.F., Springer, M.S., andAdler, J. 1977. Sensory transduction inEscherichia coli-role of a protein methylation in sensory adaptation.Proc. Natl. Acad. Sci. U.S.A. 74:4964–4968.

    Google Scholar 

  • Harayama, S., Palva, E.T., andHazelbauer, G.L. 1979. Transposon insertion mutants ofEscherichia coli K-12 defective in a component common to galactose and ribose chemotaxis.Mol. Gen. Genet. 171:193–203.

    Google Scholar 

  • Hazelbauer, G.L. 1975. Maltose chemoreceptor ofEscherichia coli.J. Bacteriol. 122:206–214.

    Google Scholar 

  • Hazelbauer, G.L., andAdler, J. 1971. Role of the galactose binding protein in chemotaxis ofEscherichia coli towards galactose.Nature (London), New Biol. 230:101–103.

    Google Scholar 

  • Hazelbauer, G.L., Engstrom, P., andHarayama, S. 1981, Methyl-accepting chemotaxis protein III and transducer genetrg.J. Bacteriol. 145:43–49.

    Google Scholar 

  • Hedblom, M.L., andAdler, J. 1980. Genetic and biochemical properties ofEscherichia coli mutants with defects in serine chemotaxis.J. Bacteriol. 144:1040–1060.

    Google Scholar 

  • Hilmen, M., andSimon, M., 1976. Motility and the structure of the bacterial flagella, pp. 35–45, in R. Goldman, T. Pollard, and J. Rosenbaum (eds.). Cell Motility. Cold Spring Harbor Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Imae, Y. Mizuno, T., andMaeda, K. 1984. Chemosensory and thermosensory excitation in adaptation deficient mutants ofEscherichia coli.J. Bacteriol. 159:368–374.

    Google Scholar 

  • Kathariou, S., andGreenberg, E.P. 1983. Chemoattractants elicit methylation of specific polypeptides inSpirochaeta aurantia J. Bacteriol. 156:95–100.

    Google Scholar 

  • Kehry, M.R., andDahlquist, F.W. 1982. The methyl-accepting chemotaxis proteins ofEscherichia coli.J. Bacteriol. 257:10378–10386.

    Google Scholar 

  • Kehry, M.R., Dahlquist, F.W., andBond, M.W. 1983. Bacterial chemotaxis: The chemical properties of the CheB dependent modification, pp. 533–549,in H. Sund, and C. Veegers (eds.). Mobility and Recognition in Cell Biology. Walter de Gruyter, Berlin.

    Google Scholar 

  • Kehry, M.R., Doak, T.G., andDahlquist, F.W. 1985. Abberrant regulation of methylesterase activity incheD chemotaxis mutants ofEscherichia coll.J. Bacteriol. 161:105–112.

    Google Scholar 

  • Kellerman, O., andSzmelcman, S. 1974. Active transport of maltose inEscherichia coll.Eur. J. Biochem. 249:6926–6932.

    Google Scholar 

  • Khan, S., andMacnab, R.M. 1980. Proton chemical potential, proton electrical potential and bacterial motility.J. Mol. Biol. 138:599–614.

    Google Scholar 

  • Kleene, S.J., Toews, M.L. andAdler, J. 1977. Isolation of glutamic methyl ester from anEscherichia coli membrane protein involved in chemotaxis.J. Biol. Chem. 252:3214–3218.

    Google Scholar 

  • Kondoh, H., Ball, C.B., andAdler, J. 1979. Identification of a methyl-accepting chemotaxis protein for the ribose and galactose chemoreceptors ofEscherichia coli.Proc. Natl. Acad. Sci. U.S.A. 76:260–264.

    Google Scholar 

  • Kort, E.N., Goy, M.F., Larsen, S.H. andAdler, J. 1975. Methylation of a membrane protein involved in bacterial chemotaxis.Proc. Natl. Acad. Sci. U.S.A. 72:3939–3943.

    Google Scholar 

  • Koshland, D.E. 1984. Control of enzyme activity and metabolic pathways.TIBS 9:155–159.

    Google Scholar 

  • Krikos, A., Mutoh, N., Boyd, A., andSimon, M. 1983. Sensory transducers ofE. coli are composed of discrete structural and functional domains.Cell 33:615–622.

    Google Scholar 

  • Krikos, A., Conely, P.M., Boyd, A., Berg, H.C., andSimon, M.I. 1985. Chimeric chemosensory transducers ofE. coli.Proc. Natl. Acad. Sci. U.S.A. 82:1326–1330.

    Google Scholar 

  • Kutsukake, K., Iino, T., Komeda, Y., andYamaguchi, S. 1980. Functional homology offla genes betweenSalmonella typhimurium andEscherichia coli.Mol. Gen. Genet. 178:59–67.

    Google Scholar 

  • Kyte, J., andDoolittle, R.F. 1982. A simple method for displaying the hydropathic character of a protein.J. Mol Biol. 157:105–132.

    Google Scholar 

  • Macnab, R.M., andAizawa, S. 1984. Bacterial motility and the bacterial flagellar motor.Annu. Rev. Biophys. Bioenerg. 13:51–83.

    Google Scholar 

  • Macnab, R.M., andKoshland, D.E., Jr. 1972. The gradient sensing mechanism in bacterial chemotaxis.Proc. Natl. Acad. Sci. U.S.A. 69:2509–2512.

    Google Scholar 

  • Macnab, R.M., andOrnston, M.K. 1977. Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilization of an alternative quaternary structure by mechanical force.J. Mol. Biol. 112:1–30.

    Google Scholar 

  • Matsumura, P., Silverman, M., andSimon, M. 1977. Syntheis ofmot andche gene products ofEscherichia coli programmed by hybrid colE1 plasmids in minicells.J. Bacteriol. 132:996–1002.

    Google Scholar 

  • Matsumura, P., Rydell, J.J., Linzmeier, R., andVacante, D. 1984. Overexpression and sequence of theEscherichia coli cheY gene and biochemical activities of thecheY protein.J. Bacteriol. 160:36–41.

    Google Scholar 

  • Mitchell, P. 1985. Molecular mechanics of protonmotive FOF1, ATPases.FEBS Lett. 182:1–7.

    Google Scholar 

  • Mizuno, T., Maeda, K., andImae, Y. 1984. Thermosensory transduction inEscherichia coli, in F. Oosawa, T. Yoshioka, and H. Hayashi (eds.). Transmembrane Signalling and Sensation. Japan Scientific Societies Press, Tokyo.

    Google Scholar 

  • Niwano, M., andTaylor, B.L. 1982. Novel sensory adaptation mechanism in bacterial chemotaxis to oxygen and phosphotransferase substrates.Proc. Natl. Acad. Sci. U.S.A. 79:11–15.

    Google Scholar 

  • Odea, R.F., Viveros, O.H. andDiliberto, E.J., Jr. 1981. Protein carboxylation: Role in the regulation of cell functions.Biochem. Pharmacol. 11:1163–1168.

    Google Scholar 

  • Ordal, G.W. 1985. Bacterial chemotaxis: Biochemistry of behavior in a single cell.C.R.C. C.R. Mic., 12:95–130.

    Google Scholar 

  • Ordal, G.W., andAdler, J. 1974. Properties of mutants in galactose taxis and transport.J. Bacteriol. 117:517–526.

    Google Scholar 

  • Ordal, G.W., andFields, R.B. 1977. A biochemical mechanism for bacterial chemotaxis.J. Theor. Biol. 68:491–500.

    Google Scholar 

  • Parkinson, J.S. 1976.cheA, cheB, cheC genes ofEscherichia coli and their role in chemotaxis.J. Bacteriol. 126:758–770.

    Google Scholar 

  • Parkinson, J.S. 1977. Behavioral genetics in bacteria.Annu. Rev. Genet. 11:397–414.

    Google Scholar 

  • Parkinson, J.S., 1978. Complementation analysis and deletion mapping ofEscherichia coli mutants defective in chemotaxis.J. Bacteriol. 135:45–53.

    Google Scholar 

  • Parkinson, J.S., andHazelbauer, G.L. 1983. Bacterial chemotaxis: Molecular genetics of sensory transduction and chemotactics gene expression, pp. 293–318,in J. Beckwith, J. Davies, and J. Gallant (eds.). Gene Function in Prokaryotes. Cold Spring Harbor Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Parkinson, J.S., andParker, S.R. 1979. Interaction of thecheC andcheZ gene products is required for chemotactic behavior inEscherichia coli.Proc. Natl. Acad. Sci. U.S.A. 76:2390–2394.

    Google Scholar 

  • Parkinson, J.S.,Parker, S.R.,Talbot, P.B., andHouts, S.E. 1983. Interactions between chemotaxis genes and flagellar genes inEscherichia coli.J. Bacterial.

  • Ravid, S., andEisenbach, M. 1984. Direction of flagellar rotation in bacterial cell envelopes.J. Bacteriol. 158:222–230.

    Google Scholar 

  • Ridgeway, H.F., Silverman, M., andSimon, M. 1977. Localization of proteins controlling motility and chemotaxis inEscherichia coli.J. Bacteriol. 132:657–665.

    Google Scholar 

  • Rollins, C., andDahlquist, F.W. 1981. The methyl-accepting chemotaxis proteins ofE. coli: A repellent stimulated covalent modification distinct from methylation.Cell 25:333–340.

    Google Scholar 

  • Rosen, G. 1984. Commensalism of methane-producing and motile aerobic bacteria in certain freshwater wetlands.Bull. Math. Biol. 46:333–336.

    Google Scholar 

  • Russo, A.F., andKoshland, D.E., Jr. 1983. Separation of signal transduction and adaptation functions of the aspartate receptor in bacterial sensing.Science 220:1016–1020.

    Google Scholar 

  • Schichi, H., andSommers, R.L. 1978. Light dependent phosphorylation of rhodopsin.J. Biol. Chem. 253:7040–7046.

    Google Scholar 

  • Segall, J.E., Manson, M.D., andBerg, H.C. 1982. Signal processing times in bacterial chemotaxis.Nature 296:855–857.

    Google Scholar 

  • Shaw, P., Gomes, S.L., Sweeney, K., Ely, B., andShapiro, L. 1983. Methylation involved in chemotaxis is regulated duringCaulobacter differentiation.Proc. Natl. Acad. Sci. U.S.A. 80:5261–5265.

    Google Scholar 

  • Sherman, M.Y., andVorobyeva, N.V. 1985. The involvement of chemotaxis in the regulation ofEscherichia coli cell division.Microbiology 53:419–422.

    Google Scholar 

  • Sherris, D., andParkinson, J.S. 1981. Posttranslational processing of methylaccepting chemotaxis proteins inEscherichia coli.Proc. Natl. Acad. Sci. U.S.A. 78:6051–6055.

    Google Scholar 

  • Shioi, J.-I, Galloway, R.J., Niwano, M., Chimnock, R.E., andTaylor, B.L. 1982. Requirement of ATP in bacterial chemotaxis.J. Biol. Chem. 257:7969–7975.

    Google Scholar 

  • Silverman, M. 1980. Building bacterial flagella,Q. Rev. Biol. 55:395–408.

    Google Scholar 

  • Silverman, M., andSimon, M. 1973. Genetic analysis of bacteriophage Mu-induced flagellar mutants inEscherichia coli.J. Bacteriol. 116:114–122.

    Google Scholar 

  • Silverman, M., andSimon, M. 1974. Flagellar rotation and the mechanism of bacterial motility.Nature 249:73–74.

    Google Scholar 

  • Silverman, M., andSimon, M. 1976. Operon controlling motility and chemotaxis inEscherichia coli.Nature 264:577–580.

    Google Scholar 

  • Silverman, M., andSimon, M. 1977a. Identification of polypeptides necessary for chemotaxis inEscherichia coli.J. Bacteriol. 130:1317–1325.

    Google Scholar 

  • Silverman, M., andSimon, M. 1977b. Chemotaxis inEscherichia coli: Methylation ofche gene products.Proc. Natl. Acad. Sci, U.S.A. 74:3317–3321.

    Google Scholar 

  • Silverman, M., Matsumura, P., Hilmen, M., andSimon, M. 1977. Characterization of lambdaEscherichia coli hybrids cafrying chemotaxis genes.J. Bacteriol. 130:877–887.

    Google Scholar 

  • Slocum, M.K., andParkinson, J.S. 1983. Genetics of methyl-accepting chemotaxis proteins inEscherichia coli: Organization of thetar region.J. Bacteriol. 155:565–577.

    Google Scholar 

  • Smith, R.A., andParkinson, J.S. 1980. Overlapping genes at thecheA locus ofEscherichia coli.Proc. Natl. Acad. Sci, U.S.A. 77:5370–5374.

    Google Scholar 

  • Springer, W.R., andKoshland, D.E., Jr. 1977. Identification of a protein methyl-transferase as thecheR gene product in the bacterial sensing system.Proc. Natl. Acad. Sci, U.S.A. 74:533–537.

    Google Scholar 

  • Springer, M.S., andZanolari, B. 1984. Sensory transduction inEscherichia coli: Regulation of the demethylation rate by the CheA protein.Proc. Natl. Acad. Sci, U.S.A. 81:5061–5065.

    Google Scholar 

  • Springer, M.S., Goy, M.F., andAdler, J. 1977. Sensory transduction inEscherichia coli: Two complementary pathways of information processing that involve methylated proteins.Proc. Natl. Acad. Sci, U.S.A. 74:3312–3316.

    Google Scholar 

  • Stock, J.B., andKoshland, D.E. Jr. 1978. A protein methylesterase involved in bacterial sensing.Proc. Natl. Acad. Sci, U.S.A. 75:3659–3663.

    Google Scholar 

  • Taylor, B.L. 1983. Role of proton motive force in sensory transduction in bacteria.Annu. Rev. Microbiol. 37:551–573.

    Google Scholar 

  • Toews, M.L., andAdler, J. 1979. Methanol formation in vivo from methylated chemotaxis proteins inEscherichia coli.J. Biol. Chem. 254:1761–1764.

    Google Scholar 

  • Vaituzis, Z., andDoetsch, R.N. 1969. Relationship between cell wall, cytoplasmic membrane, and bacterial motility.J. Bacteriol. 100:512–521.

    Google Scholar 

  • van der Werf, P., andKoshland, D.E., Jr. 1977. Identification of a glutamyl ester in a bacterial membrane protein involved in chemotaxis.J. Biol. Chem. 252:2793–2795.

    Google Scholar 

  • Wang, E.A., andKoshland, D.E., Jr. 1980. Receptor structure in the bacterial sensing system.Proc. Natl. Acad. Sci, U.S.A. 77:7175–7179.

    Google Scholar 

  • Warrick, H.M., Taylor, B.L., andKoshland, D.E., Jr. 1977. Chemotactic mechanism ofSalmonella typhimurium: Preliminary mapping and characterization of mutants.J. Bacteriol. 130:223–231.

    Google Scholar 

  • Willis, R.C., andFurlong, C.W. 1974. Purification and properties of a ribose-binding protein fromEscherichia coli.J. Biochem. 249:6926–6929.

    Google Scholar 

  • Zusman, D.R. 1984. Cell-cell interactions and developments inMyxococcus xanthus, Q. Rev. Biol. 59:119–138.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartlett, D.H., Matsumura, P. Behavioral responses to chemical cues by bacteria. J Chem Ecol 12, 1071–1089 (1986). https://doi.org/10.1007/BF01638997

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01638997

Key words

Navigation