Skip to main content
Log in

How do giant plant cells cope with injury?—The wound response in siphonous green algae

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aist JR (1976) Papillae and related wound plugs in plant cells. Ann Rev Phytopathol 14: 145–163

    Google Scholar 

  • — (1977) Mechanically induced wall apposition of plant cells can prevent penetration by a parasitic fungus. Science 197: 568–571

    Google Scholar 

  • Allen MB, Dawson EY (1960) Production of antimicrobial substances by some benthic tropical algae. J Bacteriol 79: 459–460

    Google Scholar 

  • Allen NS, Bowles EA (1985) Steady currents go throughAcetabularia crenulata. Biochem J 47: 122 a

    Google Scholar 

  • Almodovar LR (1963) Ecological aspects of some antibiotic algae in Puerto Rico. Bot Mar 6: 143–146

    Google Scholar 

  • Bassoullet J-P, Bernier P, Deloffre R, Genot P, Poncet J, Roux A (1983)Udoteaceae algae, from the Paleozoic to the Cenozoic. Soc Nat Elf Aquitaine 7: 449–621

    Google Scholar 

  • Behnke H-D (1983) Cytology and morphogenesis of higher plant cells-Phloem. Progress Bot 45: 18–38

    Google Scholar 

  • Bold HC, Wynne MJ (1985) Introduction to the algae. Structure and reproduction, 2nd edition. Prentice-Hall, Inc, Englewood Cliffs, New Jersey

    Google Scholar 

  • Borowitzka MA, Larkum AWD (1977) Calcification in the green algaHalimeda. I. An ultrastructural study of thallus development. J Phycol 13: 6–16

    Google Scholar 

  • Brawley SH, Sears JR (1982) Septal plugs in a green alga. Am J Bot 69: 455–463

    Google Scholar 

  • —,Wetherbee R (1981) Cytology and ultrastructure. In:Lobban CS, Wynne MJ (eds) The biology of the seaweeds. University of California Press, Berkeley, Los Angeles, pp 248–299

    Google Scholar 

  • Brown RC, Lemmon BE (1981) Aperture development in spores of the mossTrematodon longicollis mx. Protoplasma 106: 273–287

    Google Scholar 

  • Buggeln RG (1981) Morphogenesis and growth regulators. In:Lobban CS, Wynne MJ (eds) The biology of seaweeds. University of California Press, Berkeley, Los Angeles, pp 627–660

    Google Scholar 

  • Burkholder PR, Burkholder LM, Almodovar LR (1960) Antibiotic activity of some marine algae of Puerto Rico. Bot Mar 2: 149–157

    Google Scholar 

  • Burr FA, Evert RF (1972) A cytochemical study of the wound-healing protein inBryopsis hypnoides. Cytobios 6: 199–215

    Google Scholar 

  • —,West JA (1970) Light and electron microscope observations on the vegetative and reproductive structures ofBryopsis hypnoides. Phycologia 9: 17–37

    Google Scholar 

  • — — (1971) Protein bodies inBryopsis hypnoides: Their relationship to wound-healing and branch septum development. J Ultrastruct Res 35: 476–498

    Google Scholar 

  • Clarke KJ, McCully ME (1985) The occurrence of wall papillae in root epidermis cells of axenically grown seedlings ofZea mays. Am J Bot 72: 1483–1489

    Google Scholar 

  • Cresti M, van Went JL (1976) Callose deposition and plug formation inPetunia pollen tubes in situ. Planta 133: 35–40

    Google Scholar 

  • Currier HB (1957) Callose substance in plant cells. Am J Bot 44: 478–488

    Google Scholar 

  • Dawes CJ, Goddard RH (1978) Chemical composition of the wound plug and entire plants for species of the coenocytic green alga,Caulerpa. J Expt Mar Biol Ecol 35: 259–263

    Google Scholar 

  • Deloffre R, Genot P (1982) CenozoicDasyclad algae. Bull Centre Rech Explor-Prod Elf-Aquitaine 4: 1–247

    Google Scholar 

  • De Paula EJ, West JA (1986) Culture studies onPedobesia ryukyuensis (Derbesiales, Chlorophyta), a new record in Brasil. Phycologia 25: 482–493

    Google Scholar 

  • Dostal R (1929) Zur Vitalfärbung und Morphogenese der Meeressiphoneen. Protoplasma 5: 168–178

    Google Scholar 

  • Dreher TW, Grant BR, Wetherbee R (1978) The wound response in the siphonous algaCaulerpa simpliciuscula C. A.: Fine structure and cytology. Protoplasma 96: 189–203

    Google Scholar 

  • —,Hawthorne DB, Grant BR (1982) The wound response of the siphonous green algal genusCaulerpa. III. Composition and origin of the wound plug. Protoplasma 110: 129–137

    Google Scholar 

  • Ducker SC (1967) The genusChlorodesmis (Chlorophyta) in the Indo-Pacific region. Nova Hedwigia 13: 145–182

    Google Scholar 

  • Duffield EC, Waaland SD, Cleland R (1972) Morphogenesis in the red algaGriffithsia pacifica. Regeneration from single cells. Planta 105: 185–195

    Google Scholar 

  • Egerod LE (1952) An analysis of the siphonousChlorophycophyta. Univ of California Pub Bot 25: 325–454

    Google Scholar 

  • Enomoto S, Hirose H (1972) Culture studies on artificially induced aplanospores and their development in the marine algaBoergesenia forbesii (Harvey) Feldmann (Chlorophyceae, Siphonocladales). Phycologia 11: 119–122

    Google Scholar 

  • Ernst A (1904) Zur Kenntnis des Zellinhaltes vonDerbesia. Flora 93: 514–532

    Google Scholar 

  • Figdor W (1910) Über Restitutionserscheinungen beiDasycladus clavaeformis. Ber Deutsch Bot Ges 28: 224–227

    Google Scholar 

  • Foissner I (1987) The relationship of echinate inclusions and coated vesicles on wound healing inNitella flexilis (Characeae). Protoplasma 142: 164–175

    Google Scholar 

  • Friedmann EI, Roth WC, Turner JB, McEwen RS (1972) Calcium oxalate crystals in the argonite producing green algaPenicillus and related genera. Science 177: 891–893

    Google Scholar 

  • — — (1977) Development of the siphonous green algaPenicillus and theEspera state. Bot J Linnean Soc 74: 189–214

    Google Scholar 

  • Fry SC (1979) Phenolic components of the primary cell wall and their possible role in the hormonal regulation of growth. Planta 146: 343–351

    Google Scholar 

  • Galway ME, McCully ME (1987) The time course of the induction of callose in wounded pea roots. Protoplasma 139: 77–91

    Google Scholar 

  • Gaspar T, Penel C, Thorpe Greppin H (1982) Peroxidases. A survey of their biochemical and physiological roles in higher plants. F Lenzi Publ, Université de Genéve, Genéve

    Google Scholar 

  • Gibor A (1965) Surviving cytoplastsin vitro. Proc Natl Acad Sci USA 54: 1527–1531

    Google Scholar 

  • Glombitza K-W (1969) Antibacterielle Inhaltsstoffe in Algen. Helgol Wiss Meeresunters 19: 376–384

    Google Scholar 

  • Goddard RH, Dawes CJ (1983) An ultrastructural and histochemical study of the wound response in the coenocytic green algaCaulerpa ashameadii (Caulerpales). Protoplasma 114: 163–172

    Google Scholar 

  • Goetz H (1897) Zur Systematik der GattungVaucheria D. C. Flora 83: 88–134

    Google Scholar 

  • Gradmann D (1984) Electrogenic Cl-pump in the marine algaAcetabularia. In:Gerencser GA (ed) Chloride transport coupling in biological membranes and epithelia. Elsevier Science Publishers BV, Amsterdam, pp 14–59

    Google Scholar 

  • —,Tittor J, Goldfarb V (1982) Electrogenic Cl-pump inAcetabularia. Phil Trans R Soc London B 299: 447–457

    Google Scholar 

  • —,Mummert H (1980) Plant action potentials. In:Spanswick RM, Lucas WJ, Dainty J (eds) Plant membrane transport: current conceptual issues. Elsevier/North-Holland, Amsterdam, pp 333–344

    Google Scholar 

  • Gull K (1978) Form and function of septa in filamentous fungi. In:Smith JE, Berry DR (eds) The filamentous fungi. Developmental mycology. Wiley, New York, pp 78–93

    Google Scholar 

  • Hämmerling F (1943) Entwicklung und Regeneration vonAcetabularia crenulata. Z Vererbungsl 81: 84–113

    Google Scholar 

  • Haberlandt G (1929) Über Regenerationsvorgänge beiBryopsis undCodium. Sitzungsber Preuss Akad Wiss Phys Math 22: 327–340

    Google Scholar 

  • Hall HG (1978) Hardening of the sea urchin fertilization envelope by peroxidase-catalized phenolic coupling of tyrosines. Cell 15: 343–356

    Google Scholar 

  • Hang A (1976) The influence of borate and calcium in the gel formation of a sulfated polysaccharide fromUlva lactuca. Acta Chem Scand 30: 562–566

    Google Scholar 

  • Hanstein, von, J (1873) Über die Lebenszähigkeit derVaucheria-Zelle und das Reproduktionsvermögen ihres protoplasmatischen Systems. Bot Z 31: 697–700

    Google Scholar 

  • Harborne JB (1980) Plant phenolics. In:Bell EA, Charlwood BV (eds). Secondary plant products. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hartley RD, Jones EC (1976) Diferulic acid as a component of cell wall ofLolium multiflorum. Phytochem 15: 1157–1260

    Google Scholar 

  • Hawthorne DB, Dreher TW, Grant BR (1981) The wound response in the siphonous algaCaulerpa simpliciuscula C. Ag.: II. The effect wounding on carbon flow. Protoplasma 105: 195–206

    Google Scholar 

  • Hoffman LR (1973) Fertilization inOedogonium. I. Plasmogamy. J Phycol 9: 62–84

    Google Scholar 

  • Högberg HE, Thomson RH (1976) Cymopols, a group of prenylated bromohydroquinones from the green calcareous algaCymopolia berbata. J Chem Soc Perkin I: 1696–1701

    Google Scholar 

  • Hope AB, Walker NA (1975) The physiology of giant algal cells. Cambridge University Press, Cambridge

    Google Scholar 

  • Hornsey IS, Hide D (1976) The production of antimicrobial compounds by british marine algae. II. Seasonal variations in production of antibiotics. Br Phycol J II: 63–67

    Google Scholar 

  • Howard RJ, Wright SW, Grant BR (1976) Structure and some properties of soluble 1,3-ß-glucan isolated from the green algaCaulerpa simpliciuscula. Plant Physiol 58: 459–463

    Google Scholar 

  • Hollenberg GJ (1935) A study ofHalicystis ovalis. I. Morphology and reproduction. Am J Bot 22: 782–812

    Google Scholar 

  • Ishizawa K, Enomoto S, Wada S (1979) Germination and photoinduction of polarity in the spherical cells regenerated from protoplasm fragments ofBoergesenia forbesii. Bot Mag Tokyo 92: 173–186

    Google Scholar 

  • Jacobs WP (1970) Development and regeneration of the algal giant coenocyteCaulerpa. Ann NY Acad Sci 175: 732–748

    Google Scholar 

  • Jensen KR (1980) A review of sacoglossan diets, with comparative notes on radular and buccal anatomy. Malocological Rev 13: 55–77

    Google Scholar 

  • — (1981) Observations on feeding methods in some Florida ascoglossans. J Moll Stud 47: 190–199

    Google Scholar 

  • Kamimoto K (1955) Studies on the antibacterial substances extracted from seaweeds on the growth of some pathogenic bacteria. Jap J Bacteriol 10: 897–902

    Google Scholar 

  • Kamiya N (1986) Cytoplasmic streaming in giant algal cells: A historical survey of experimental approaches. Bot Mag 99: 444–467

    Google Scholar 

  • Kauss H (1985) Callose biosynthesis as a Ca2+-regulated process and possible relations to the induction of other metabolic changes. J Cell Sci [Suppl] 2: 89–103

    Google Scholar 

  • Klemm P (1894) Über die Regenerationsvorgänge bei den Siphonaceen. Flora 78: 19–40

    Google Scholar 

  • Kollmann R (1980) Fine structural and biochemical characterization of phloem proteins. Can J Bot 58: 802–806

    Google Scholar 

  • Koop HU (1981) Protoplasmic streaming inAcetabularia. Protoplasma 109: 143–157

    Google Scholar 

  • Kroh M, Knuiman B (1982) Ultrastructure of cell wall and plugs of tobacco pollen tubes after chemical extraction of polysaccharides. Planta 154: 241–250

    Google Scholar 

  • Küster E (1899) ÜberDerbesia undBryopsis. Ber Deutsch Bot Ges 17: 77–84

    Google Scholar 

  • — (1925) Pathologische Pflanzenanatomie. G Fischer, Jena

    Google Scholar 

  • La Bella F, Waykole P, Queen G (1968) Formation of insoluble gels and dityrosine by the action of peroxidase on soluble collagen. Biochem Biophys Res Commun 30: 333–338

    Google Scholar 

  • La Claire IIJW (1982 a) Wound-healing motility in the green algaErnodesmis: Calcium ions and metabolic energy are required. Planta 156: 466–474

    Google Scholar 

  • — (1982 b) Cytomorphological aspects of wound healing in selectedSiphonocladales (Chlorophyceae). J Phycol 18: 379–384

    Google Scholar 

  • — (1983) Inducement of wound motility in intact giant algal cells. Expt Cell Res 145: 63–69

    Google Scholar 

  • — (1984) Cell motility during wound healing in giant algal cells: contraction in detergent—permeabilized cell models ofErnodesmis. Eur J Cell Biol 33: 180–189

    Google Scholar 

  • Lawson CJ, Ress DA (1970) An enzyme for the metabolic control of polysaccharide conformation and function. Nature 227: 392–393

    Google Scholar 

  • Lipetz J (1976) Wound healing in higher plants. Int Rev Cytol 27: 1–28

    Google Scholar 

  • Lohr CA (1975) Cytological and chemical aspects of the wound response inCaulerpa prolifera. PhD dissertation University of South Florida, Tampa

    Google Scholar 

  • Macklon AES (1984) Calcium fluxes at plasmalemma and tonoplast. Plant, Cell Environm 7: 407–413

    Google Scholar 

  • Marchant HJ, Pickett-Heaps JD (1970) Ultrastructure and differentiation ofHydrodictyon reticulatum. I. Mitosis in the coenobium. Austral J Biol Sci 23: 1173–1186

    Google Scholar 

  • Mariani-Colombo P (1984) Colchicine effects on wounded and entire thalli ofUdotea petiolata. (Siphonales). Cytobios 40: 95–106

    Google Scholar 

  • —,De Carli ME (1980) Morphological and ultrastructural aspects of regeneration following wounding in theUdotea petiolata thallus. Cytobios 27: 147–155

    Google Scholar 

  • —,Postai E (1978) The process of wound repair inUdotea petiolata (Siphonales). Cytobios 23: 7–16

    Google Scholar 

  • —,Vannini GL, Mares D (1980) A cytochemical approach to the wound repair mechanism inUdotea petiolata (Siphonales). Protoplasma 104: 105–117

    Google Scholar 

  • Martinez Nadal NG, Casillas Chapel CM, Rodriguez LV, Rodriguez Perazza JR, Torres Vera L (1966) Antibiotic properties of marine algae. III.Cymopolia barbata. Bot Mar 9: 21–26

    Google Scholar 

  • McCandless EL (1981) Polysaccharides of the seaweeds. In:Lobban CS, Wynne MJ (eds) The biology of the seaweeds. University of California Press, Berkeley, pp 559–587

    Google Scholar 

  • Meinez A (1980 a) Connaissances actuelles et contribution à l'étude de la reproduction et du cycle des Udoteacees (Caulerpales, Chlorophytes). Phycologia 19: 110–138

    Google Scholar 

  • - (1980 b) Contribution a l'étude des Caulerpales (Chlorophytes). PhD dissertation, L'Université de Nice

  • Melchior H, Werdermann E (eds) (1954) Engler's Syllabus der Pflanzenfamilien. Gebrüder Borntraeger, Berlin-Nikolassee

    Google Scholar 

  • Menzel D (1979 a) Plug formation inDerbesia/Halicystis. Eur J Cell Biol 20: 132

    Google Scholar 

  • — (1979 b) Accumulation of peroxidase in the cap rays ofAcetabularia during the development of gametangia. J Histochem Cytochem 27: 1003–1010

    Google Scholar 

  • — (1979 c) Auftreten und mögliche Bedeutung der Peroxidase bei der Wundheilung vonDasycladus clavaeformis. Hoppe Seyler's Z Physiol Chem 360: 327

    Google Scholar 

  • — (1980 a) Development and fine structure of plugs in the cap rays ofAcetabularia acetabulum (mediterranea, (L)Silva,Dasycladales). Phycologia 20: 56–64

    Google Scholar 

  • — (1980 b) Plug formation and peroxidase accumulation in two orders of siphonous green algae (Caulerpales andDasycladales) in relation to fertilization and injury. Phycologia 19: 37–48

    Google Scholar 

  • - (1982) Peroxidase in siphonalen Grünalgen; Vergleichende cytologische und cytochemische Untersuchungen über ihre Beteiligung an der Wundreaktion und Propfbildung. PhD Dissertation, Freie Universität Berlin

  • — (1986) Visualization of cytoskeletal changes through the life cycle inAcetabularia. Protoplasma 134: 30–42

    Google Scholar 

  • — (1987 a) Fine structure of vacuolar inclusions in the siphonous green algaChlorodesmis fastigiata (Udoteaceae, Caulerpales) and their contribution to plug formation. Phycologie 26: 205–221

    Google Scholar 

  • Menzel D (1987 b) Cytoplasmic contraction in coenocytic green algae is triggered by calcium influx. Eur J Cell Biol 43: [Suppl] 17: 37

    Google Scholar 

  • —,Grant B (1981) Fine structure study on the development of trabeculae in the siphonous green algaCaulerpa simpliciuscula C. Ag. Protoplasma 107: 47–68

    Google Scholar 

  • —,Grant B (1982) Peroxidase inCaulerpa. J Phycol 17: 113–120

    Google Scholar 

  • —,Kazlauskas R, Reichelt J (1983) Coumarins in the siphonalean green algal familyDasycladales Kutzing (Chlorophyceae). Bot Mar 26: 23–29

    Google Scholar 

  • —,Schliwa M (1986) Motility in the siphonous green algaBryopsis. I. Spatial organization of the cytoskeleton and organelle movements. Eur J Cell Biol 40: 275–285

    Google Scholar 

  • Milbert DJ (1977) Pore plug formation inOchromonas tuberculata. J Phycol 13: 309–320

    Google Scholar 

  • Mizukami M, Wada S (1981) Action spectrum for light-induced chloroplast accumulation in a marine coenocytic green alga,Bryopsis plumosa. Plant and Cell Physiol 22: 1245–1255

    Google Scholar 

  • Neuhaus G, Schweiger H-G (1987) Two way traffic between nucleus and cytoplasm: cell surgery studies ofAcetabularia. In:Peters R, Trendelenburg M (eds). Nucleocytoplasmic transport. Springer, Berlin Heidelberg New York, pp 63–71

    Google Scholar 

  • Neumann K (1974) Zur Entwicklungsgeschichte und Systematik der siphonalen GrünalgenDerbesia undBryopsis. Bot Mar 17: 176–185

    Google Scholar 

  • Nichols SP (1922) Methods of healing in some algal cells. Am J Bot 9: 18–29

    Google Scholar 

  • Nimes RC, Halliwell RS, Rosberg DW (1967) Wound healing in cultured tobacco cells following microinjection. Protoplasma 64: 305–314

    Google Scholar 

  • Noll F (1899) Die geformten Proteine im Zellsaft vonDerbesia. Ber Deutsch Bot Ges 17: 303–306

    Google Scholar 

  • Norris JN,Fenical W (1982) Chemical defense in tropical marine algae. In:Rützler K,Macintyre IG (eds) The atlantic barrier reef ecosystem at Carrie Bow Cay, Belize. 1: Structure and communities. Smithonian Contr Mar Sci 12: 417–431

  • Novak B, Bentrup FW (1972) An electrophysiological study of regeneration inAcetabularia mediterranea. Plant 108: 227–244

    Google Scholar 

  • —,Sironval C (1975) Inhibition of regeneration ofAcetabularia mediterranea enucleated posterior stalk segments by electrical isolation. Plant Science Lett 5: 183–188

    Google Scholar 

  • Olsen-Stojkovich J (1985) A systematic study of the genusAvrainvillea Decaisne (Chlorophyta, Udoteaceae). Nova Hedwigia 41: 1–68

    Google Scholar 

  • — (1986) Phylogenetic studies among genera in theSiphonocladales-Cladophorales complex (Chlorophyta). PhD dissertation, University of California, Berkeley, 186p

    Google Scholar 

  • Olsen J, West JA (1988)Ventricaria (Siphonocladales-Cladophor-ales complex, Chlorophyta), a new genus forValonia ventricosa. Phycologia 27: 103–108

    Google Scholar 

  • O'Neil RM, la Claire JW (1984) Mechanical wounding induces the formation of extensive coated membranes in giant algal cells. Science 225: 331–351

    Google Scholar 

  • Ott DW, Brown RM (1974) Developmental cytology of the genusVaucheria II. Sprogenesis inV. fontinalis (L.) Cristensen. Br J Phycol 9: 333–351

    Google Scholar 

  • Painter TJ, Neukom H (1968) The mechanism of oxidative gelation of a glycoprotein from wheat flour. Biochem Biophys Acta 158: 363–381

    Google Scholar 

  • Paul VJ, Fenical W (1983) Isolation of halimedatrial: Chemical defense adaptation in calcareous reef-building algaHalimeda. Science 221: 747–749

    Google Scholar 

  • Percival E (1978) Sulfated polysaccharides metabolized by the marineChlorophyceae—a review. ACS Symposium Ser 77: Chapt 13, pp 203–212

    Google Scholar 

  • Pickett-Heaps JD (1975) Green algae. Structure, reproduction and evolution in selected genera. Sinauer Associates Sunderland, Massachusetts

    Google Scholar 

  • Pocock MA (1960)Hydrodictyon: A comparative biological study. JS African Bot 26: 167–327

    Google Scholar 

  • Pueschel CM, Cole KM (1982) Rhodophycean pit plugs: An ultrastructural survey with taxonomic implications. Am J Bot 69: 703–720

    Google Scholar 

  • Rogers DJ, Blunden G, Topliss JA, Guiry MD (1980) A survey of some marine organisms for haemagglutinins. Bot Mar 23: 569–577

    Google Scholar 

  • Santos GA, Doty MS (1971) Constituents of the green algaCaulerpa lamourouxii. Lloydia 34: 89–90

    Google Scholar 

  • Schmell ED;Gulyas BJ (1980) Ovoperoxidase activity in ionophore treated mouse eggs. II. Evidence for the enzyme's role in hardining the zona pellucida. Gamete Res 3: 279–290

    Google Scholar 

  • Schopf JW (1970) Pre-cambrian microorganisms and evolutionary events prior to the origin of vascular plants. Biol Rev 45: 319–352

    Google Scholar 

  • Schweiger H-G, Berger S (1979) Nucleocytoplasmic interrelationships inAcetabularia and some otherDasycladaceae. Int Rev Cytol [Suppl] 9: 12–41

    Google Scholar 

  • —,Dehm P, Berger S (1977) Culture conditions forAcetabularia. In:Woodcock CLF (ed) Progress inAcetabularia research. Academic Press, New York, pp 319–330

    Google Scholar 

  • Silva PC, Womersley HBS (1956) The genusCodium (Chlorophyta) in Southern Australia. Aust J Bot 3: 261–289

    Google Scholar 

  • Stafford HA (1964) Comparison of lignin-like products found naturally or induced in tissues ofPhleum, Elodea, andColeus and in paper peroxidase system. Plant Physiol 39: 350–360

    Google Scholar 

  • Steinecke F (1925) Zur Polarität vonBryopsis. Bot Arch 12: 97–118

    Google Scholar 

  • Stewart JK (1971) The biology of the green algaCharaciosiphon rivularis Iyengar. PhD dissertation, The University of Texas at Austin

  • Sun H, Fenical W (1979) Rhipocephanal, and Rhipocephalin, novel linear sesquiterpenoids from the tropical green algaRhipocephalus phoenix. Tetrahedron Lett 8: 685–688

    Google Scholar 

  • Tandler CJ (1962) Bound indoles inAcetabularia. Planta 59: 91–107

    Google Scholar 

  • Tappan H (1980) The paleobiology of plant protists. Freeman Co, San Francisco.

    Google Scholar 

  • Tatewaki M, Nagata K (1970) Surviving protoplasts in vitro and their development inBryopsis. J Phycol 6: 401–403

    Google Scholar 

  • Tazawa M, Kikuyama M, Shimmen T (1976) Electric characteristics and cytoplasmic streaming of characean cells lacking tonoplast. Cell Struct Funct 1: 165–176

    Google Scholar 

  • Thomas DL (1971) A circumscription of the genusProtosiphon. In:Parker BC, Brown Jr RM (eds) Contributions in phycology. Allen Press, Lawrence, Kansas, pp 9–24

    Google Scholar 

  • Turner JB, Friedmann EI (1974) Fine structure of capitular filaments in the coenocytic green algaPenicillus. J Phycol 10: 125–134

    Google Scholar 

  • Valet G (1969) Contribution a l'étude des Dasycladales 2. Cytologie et reproduction. 3. Révision systématique. Nova Hedwigia 17: 1551–644

    Google Scholar 

  • Vischer W (1938) Zur Kenntnis der GattungBotrydium Wallroth. Ber Schweiz Bot Ges 48: 538–561

    Google Scholar 

  • Waaland SD (1980) Development in red algae: elongation and cell fusion. In:Gantt E (ed) Handbook of phycological methods. Developmental and cytological methods. Cambridge University Press, Cambridge London New York, pp 85–94

    Google Scholar 

  • —,Cleland R (1974) Cell Repair through cell fusion in the red algaeGriffithsia pacifica. Protoplasma 79: 185–196

    Google Scholar 

  • Weber van Bosse A (1898) Monographie desCaulerpales. Ann Jard Bot Buitenzorg 15: 243–401

    Google Scholar 

  • Welch AM (1961) Preliminary survey of fungistatic properties of marine algae. J Bacteriol 83: 97–99

    Google Scholar 

  • Wendler S, Zimmermann U, Bentrup F-W (1983) Relationship between cell turgor pressure, electrical membrane potential, and chloride efflux inAcetabularia mediterranea. J Membr Biol 72: 75–84

    Google Scholar 

  • Wheeler AE, Page JZ (1974) The ultrastructure ofDerbesia tenuissima (de Nortis) Cronan, I. Organization of gametophyte protoplast, gametangium, and gametangial pore. J Phycol 10: 336–352

    Google Scholar 

  • Whitmore FW (1978 a) Lignin-protein complex catalyzed by peroxidase. Plant Sci Lett 13: 241–245

    Google Scholar 

  • — (1978 b) Lignin-carbohydrate complex formed in isolated cell walls of callus. Phytochem 17: 421–425

    Google Scholar 

  • Wilbur KM, Hillis Colinvaux L, Watabe N (1969) Electron microscope study of calcification in the algaHalimeda (orderSiphonales). Phycologia 8: 27–35

    Google Scholar 

  • Winkler H (1900) Ueber Polarität, Regeneration und Heteromorphosen beiBryopsis. Jahrb Wiss Bot 35: 449–469

    Google Scholar 

  • Wohlfarth-Bottermann KE, Stockem W (1970) Die Regeneration des Plasmalemmas vonPhysarum polycephalum. Wilhelm Roux'Arch Entwicklungsmech Org 164: 321–326

    Google Scholar 

  • Wood RD (1965) Monograph of theCharaceae. In:Wood RD, Imahori K (eds), A Revision of theCharaceae. Vol II. Cramer, Weinheim

    Google Scholar 

  • Ziegler Page J (1973) Methods for coenocytic algae. In:Stein J (ed) Handbook of phycological methods. Culture methods and growth measurements. Cambridge University Press, Cambridge New York Sydney, pp 105–126

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menzel, D. How do giant plant cells cope with injury?—The wound response in siphonous green algae. Protoplasma 144, 73–91 (1988). https://doi.org/10.1007/BF01637240

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01637240

Keywords

Navigation