Skip to main content
Log in

Lysine biosynthesis inMethanobacterium thermoautotrophicum is by the diaminopimelic acid pathway

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Methanobacterium thermoautotrophicum, an archaebacterium, possesses the first and last enzymes of the diaminopimelic acid pathway for lysine biosynthesis, dihydrodipicolinate synthase, and diaminopimelate decarboxylase. It does not have saccharopine dehydrogenase, the last enzyme of the aminoadipate pathway for lysine biosynthesis. The dihydrodipicolinate synthase is inhibited but not repressed by lysine. We conclude that this microbe uses the diaminopimelate pathway for synthesis of lysine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Bakhiet, N., Forney, F. W., Stahly, D. P., Daniels, L. 1983. Lysine biosynthesis inMethanobacterium thermoautotrophicum is by the diaminopimelic acid pathway. Abstracts of the Annual Meeting of the American Society for Microbiology1983:271.

    Google Scholar 

  2. Balch, W. E., Wolfe, R. S. 1976. New approach to cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth ofMethanobacterium ruminantium in a pressurized atmosphere. Applied and Environmental Microbiology32:781–791.

    PubMed  Google Scholar 

  3. Bryant, M. P., Wolin, E. A., Wolin, M. J., Wolfe, R. S. 1967.Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Archives for Microbiology59:20–31.

    Google Scholar 

  4. Daniels, L., Zeikus, J. G. 1978. One-carbon metabolism in methanogenic bacteria: analysis of short term fixation products of14CO2 and14CH3OH incorporated into whole cells. Journal of Bacteriology136:75–84.

    PubMed  Google Scholar 

  5. Fox, G. E., Stackebrandt, E., Hespell, R. B., Gibson, J., Maniloff, J., Dyer, T. A., Wolfe, R. S., Balch, W. E., Tanner, R. S., Magrum, L. J., Zablen, L. B., Blakemore, R., Gupta, R., Bonen, L., Lewis, B. J., Stahl, D. A., Luehrsen, K. R., Chen, K. N., Woese, C. R. 1980. The phylogeny of prokaryotes. Science209:457–463.

    PubMed  Google Scholar 

  6. Fuchs, G., Stupperich, E. 1978. Evidence for an incomplete reductive carboxylic acid cycle inMethanobacterium thermoautotrophicum. Archives for Microbiology118:121–125.

    Google Scholar 

  7. Fuchs, G., Stupperich, E., Thauer, R. K. 1978. Acetate assimilation and the synthesis of alanine, aspartate and glutamate inMethanobacterium thermoautotrophicum. Archives for Microbiology117:61–66.

    Google Scholar 

  8. Fujioka, M., Nakatani, Y. 1970. A kinetic study of saccharopine dehydrogenase reaction. European Journal of Biochemistry16:180–186.

    PubMed  Google Scholar 

  9. Grandgenett, D. P., Stahly, D. P. 1971. Repression of diaminopimelate decarboxylase byl-lysine in different Bacillus species. Journal of Bacteriology105:1211–1212.

    PubMed  Google Scholar 

  10. Hoganson, D. A., Irgens, R. L., Doi, D. H., Stahly, D. P. 1975. Bacterial sporulation and regulation of dihydrodipicolinate synthase in ribonucleic acid polymerase mutants ofBacillus subtilis. Journal of Bacteriology124:1628–1629.

    PubMed  Google Scholar 

  11. Hoganson, D. A., Stahly, D. P. 1975. Regulation of dihydrodipicolinate synthase during growth and sporulation ofBacillus cereus. Journal of Bacteriology,124:1344–1350.

    PubMed  Google Scholar 

  12. Kenealy, W., Zeikus, J. G. 1982. Ammonia assimilation and synthesis of alanine, aspartate, and glutamate inMethanosarcina barkeri andMethanobacterium thermoautotrophicum. Journal of Bacteriology150:1357–1365.

    PubMed  Google Scholar 

  13. Knight, M., Wolfe, R. S., Elsden, S. R. 1966. The synthesis of amino acids byMethanobacterium omelianskii. Biochemical Journal99:76–86.

    PubMed  Google Scholar 

  14. Maloney, P., Kashnet, E., Wilson, T. 1975. Methods for studying transport in bacteria. Methods in Membrane Biology5:1–49.

    Google Scholar 

  15. Meister, A. 1965. Biochemistry of the amino acids, vol. 2, pp. 928–940, New York: Academic.

    Google Scholar 

  16. Nakatani, Y., Fujioka, M., Higashino, K. 1972. Enzymatic determination ofl-lysine in biological materials. Analytical Biochemistry49:225–231.

    PubMed  Google Scholar 

  17. Rosner, A. 1975. Control of lysine biosynthesis inBacillus subtilis: inhibition of diaminopimelate decarboxylase by lysine. Journal of Bacteriology121:20–28.

    PubMed  Google Scholar 

  18. Vogel, H. J. 1959. Lysine biosynthesis inChlorella andEuglena: phylogenetic significance. Biochimica et Biophysica Acta34:282–283.

    Google Scholar 

  19. Vogel, H. J. 1959. On biochemical evolution: lysine formation in higher plants. Proceedings of the National Academy of Sciences45:1717–1721.

    Google Scholar 

  20. Vogel, H. J. 1960. Two modes of lysine synthesis among lower fungi: evolutionary significance. Biochimica et Biophysica Acta41:172–173.

    Google Scholar 

  21. Yugari, Y., Gilvang, C. 1965. The condensation step in diaminopimelate synthesis. Journal of Biological Chemistry240:4710–4716.

    PubMed  Google Scholar 

  22. Zeikus, J. G., Wolfe, R. S. 1972.Methanobacterium thermoautotrophicum sp. n., an anaerobic, autotrophic, extreme thermophile. Journal of Bacteriology109:707–712.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakhiet, N., Forney, F.W., Stahly, D.P. et al. Lysine biosynthesis inMethanobacterium thermoautotrophicum is by the diaminopimelic acid pathway. Current Microbiology 10, 195–198 (1984). https://doi.org/10.1007/BF01627254

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01627254

Keywords

Navigation