Skip to main content
Log in

Refractive indices for volatile anesthetic gases: Equipment and method for calibrating vaporizers and monitors

  • Original Articles
  • Published:
Journal of Clinical Monitoring Aims and scope Submit manuscript

Abstract

Objective. The objective of our study was to establish the refractive indices and the virial coefficients of the volatile anesthetic vapors. These indices and coefficients will allow refractometry to be used by manufacturers to produce accurate calibration, without requiring expensive high-precision calibration gases.Methods. We used a precision refractometer to measure the refractive indices for five volatile anesthetic vapors. We prepared our calibration gases by mixing a gravimetrically calibrated amount of liquid agent with a constant gas flow.Results. The refractive indices for the volatile anesthetic vapors are 1,603.2 for halothane, 1,540.4 for enflurane, 1,563.3 for isoflurance, 1,538.3 for sevoflurane, and 1,211.7 for desflurane. The maximum theoretical error in our measurements, due to all sensors and all uncertainty in our measurement of apparatus and physical constants, is ±0.56% of the reading (±0.70% for desflurane).Conclusions. If refractometry replaced calibration gases in cylinders, as a calibration standard, manufacturers might avoid errors that now occur because calibration gases manufactured by numerous companies seem to differ. We propose that our values serve as an interim database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walder VB, Lauber R, Zbinden AM. Accuracy and cross-sensitivity of ten different anesthetic gas monitors. J Clin Monit 1993;9:364–373

    Article  PubMed  CAS  Google Scholar 

  2. Westenskow DR, Silva FH. Laboratory evaluation of the ICOR piezoelectric anesthetic agent analyzer. J Clin Monit 1991;7:189–194

    Article  PubMed  CAS  Google Scholar 

  3. Christensen PL, Nielsen J, Kann T. Methods to produce calibration mixtures for anesthetic gas monitor and how to perform volumetric calculations on anesthetic gases. J Clin Monit 1992;8:279–284

    Article  PubMed  CAS  Google Scholar 

  4. Westenskow DR, Wallroth CF, Hattendorff H-D, et al. Standard gases used to calibrate anesthetic vapor analyzers: Are they stable? J Clin Monit 1994;10:21–25

    Article  PubMed  CAS  Google Scholar 

  5. Schon G, Steen H. Explosion thresholds and ignition temperatures of some inhalation anesthetic agents in mixtures with different oxygen vehicles. Der Anaesthesist 1968;17:6–10

    PubMed  CAS  Google Scholar 

  6. Wallroth CF, Jaklitsch R, Wied HA. Technical realization of quantitative metering and ventilation. In: van Ackern K, Frankenberger H, Konecny E, Steinbereithner N, eds. Quantitative anesthesia. Berlin: Springer-Verlag, 1989:94–108

    Google Scholar 

  7. Bottomley GA, Seifflow GHF. Vapor pressure and vapor density of halothane. J Appl Chem 1963;13:399–402

    Article  CAS  Google Scholar 

  8. Schramm B, Weber C. Measurements of the second virial coeficients of some new chlorofluorocarbons and their mixtures at temperatures in the range from 230 K to 300 K. J Chem Thermodynamics 1991;23:281–292

    Article  CAS  Google Scholar 

  9. Rodgers RC, Hill GE. Equations for vapor pressure versus temperature. Br J Anaesth 1978;50:415–424

    Article  PubMed  CAS  Google Scholar 

  10. Nebe W. Interferometrische Messungen von Halothan-Konzentrationen, Carl Zeiss Journal, VEB Carl Zeiss, Jena, Germany, May, 1965; Folge 10 Heft 1/2:51–64

  11. Eger EI, Johnson BH. Do volatile anesthetics act as ideal gases? Anesth Analg 1979;58:322–323

    PubMed  Google Scholar 

  12. Prausnitz JM. Molecular thermodynamics of fluid phase equilibria. Englewood Cliffs, NJ: Prentice Hall, 1969:125–129

    Google Scholar 

  13. Schlueter DJ, Peck ER. Refractivity of air in the near infrared. JOSA 1958;48:313–315

    CAS  Google Scholar 

  14. Sugg BR, Palayiwa E, Davies WL, et al. An automated interferometer for the analysis of anesthetic gas mixtures. Br J Anaesth 1988;61:484–491

    Article  PubMed  CAS  Google Scholar 

  15. Walker SD. Anesthetic and respiratory gas measurements by infrared technology. Biomed Instr Technol 1989;23:466–469

    CAS  Google Scholar 

  16. Møllgaard K. Acoustic gas measurement. Biomed Instr Technol 1989;23:495–497

    Google Scholar 

  17. Westenskow DR, Coleman DL. Raman scattering for respiratory gas monitoring in the operating room: Advantages, specifications, and future advances. Biomed Instr Technol 1989;23:485–489

    CAS  Google Scholar 

  18. Kinder W. Ein interferenz-Refraktometer für Gase und Flussigkeiten. Optik 1966/67;24:323–334

    Google Scholar 

  19. Rayleigh L. On some physical properties of argon and helium. Proc Roy Soc London 1896;59:198–208

    CAS  Google Scholar 

  20. Kinder W, Neumann, J, Plesse H, Torge R. Automatic interferometer with digital readout for refractometric analysis. Appl Opt 1968;7:341–342

    Article  CAS  PubMed  Google Scholar 

  21. Dopp P, Torge R. German patent DE-PS 1497655;1966

  22. Peck ER. A new principle in interferometer design. JOSA 1948;38:66

    CAS  Google Scholar 

  23. Peck ER, Obetz SW. Wavelength or length measurement by reversible fringe counting. JOSA 1953;43:505–509

    CAS  Google Scholar 

  24. Peck ER. Fractional fringe measurements with corner cube interferometer. JOSA 1955;45:795–797

    Google Scholar 

  25. Kitzsteiner F, Torge R, Jahrestagung der DGaO. Reallisierungeines Refraktometers. Interlaken, 1990

  26. Downs MJ, Birch KP. Bi-directional fringe counting interference refractometer. Precision Engineering 1983;5(3):

  27. Kroebel W, Mahrt K-H. Recent results of absolute sound velocity measurements in pure water and sea water at atmospheric pressure. Acustica 1976;35:154–164

    Google Scholar 

  28. Mahrt K-H, Kroebel W. Optical interferometric bench salinometer of high precision with electronic read out. Washington, DC: OCEANS '84, IEEE Publ No 84 CH 2066-9, 1984:219–223

    Google Scholar 

  29. Mahrt K-H, Kroebel W. Quantitative performance data of a new automatic optical bench salinometer/densitometer. San Diego, CA: OCEANS '85, IEEE Publ No 85 CH 2250-9, 1985:622–667

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallroth, C.F., Gippert, K.L., Ryschka, M. et al. Refractive indices for volatile anesthetic gases: Equipment and method for calibrating vaporizers and monitors. J Clin Monitor Comput 11, 168–174 (1995). https://doi.org/10.1007/BF01617718

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01617718

Key words

Navigation