Skip to main content
Log in

Prevention of restenosis using the gene for cecropin complexed with DOCSPER liposomes under optimized conditions

  • Original Articles
  • Published:
International Journal of Angiology

Abstract

Up to 30% of patients undergoing coronary angioplasty develop a renarrowing of treated vessels following percutaneous transluminal coronary angioplasty with or without stent implantation, called restenosis. Smooth muscle cell proliferation, among other mechanisms, is an important factor in restenosis leading to neointima formation and consequent arterial lumen narrowing. Cecropins are antimicrobial peptides with antiproliferative properties in mammalian cells which have been shown to suppress neointimal formation. In this investigation, a plasmid carrying the gene for pre-pro-cecropin A, complexed with new generation liposomes optimized for transfer conditions for vascular cells was delivered to the adventitia of arteries in a porcine arterial injury model using a needle injection catheter. Retention of the plasmid in treated arteries was demonstrated for at least 21 days following delivery. Whereas previous experiments using first generation liposomes demonstrated significant but not complete neointima inhibition, the use of new liposomes under optimized conditions resulted in almost total suppression of neointimal proliferation. Thus, in vivo gene transfer of cecropins may be therapeutically applicable in restenosis prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barker SG, Tilling LC, Miller GC, Beesley JE, Fleetwood G, Stavri GT, Baskerville PA, Martin JF (1994) The adventitia and atherogenesis: Removal initiates intimal proliferation in the rabbit which regresses on generation of a ‘neoadventitia’. Atherosclerosis 105:131–44.

    Google Scholar 

  2. Bauters C, Isner JM (1997) The biology of restenosis. Prog Cardiovasc Dis 40:107–116.

    Google Scholar 

  3. Boman HG (1995) Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 13:61–92.

    Google Scholar 

  4. Boman HG, Steiner H (1981) Humoral immunity in Cecropia pupae. Curr Top Microbiol Immunol 95:75–91.

    Google Scholar 

  5. Chang MW, Barr E, Lu MM, Barton K, Leiden JM (1995) Adenovirus-mediated over-expression of the cyclin/cyclin-dependent kinase inhibitor, p21 inhibits vascular smooth muscle cell proliferation and neointima formation in the rat carotid artery model of balloon angioplasty. J Clin Invest 96:2260–2268.

    Google Scholar 

  6. Chang MW, Barr E, Seltzer J, Jiang YQ, Nabel GJ, Nabel EG, Parmacek MS, Leiden JM (1995) Cytostatic gene therapy for vascular proliferative disorders with a constitutively active form of the retinoblastoma gene product. Science 267:518–522.

    Google Scholar 

  7. Gonschior P, Goetz AE, Huehns TY, Hofling B (1995) A new catheter for prolonged local drug application. Coron Artery Dis 6:329–334.

    Google Scholar 

  8. Gonschior P, Pahl C, Huehns TY, Gerheuser F, Erdemci A, Larisch K, Dellian M, Deil S, Goetz AE, Lehr HA (1995) Comparison of local intravascular drug-delivery catheter systems. Am Heart J 130:1174–1181.

    Google Scholar 

  9. Groth D, Keilb O, Lehmana C, Schneider M, Rudo M (1998) Preparation and characterisation of an new lipospermine for gene delivery into various cells. Int J Pharmaceutics 162:143–157.

    Google Scholar 

  10. Hernandez VP, Gerenday A, Fallon AM (1994) Secretion of an inducible cecropin-like activity by cultured mosquito cells. Am J Trop Med Hyg 50:440–447.

    Google Scholar 

  11. Hofling B, Huehns TY (1995) Intravascular local drug delivery after angioplasty. Eur Heart J 16:437–440.

    Google Scholar 

  12. Huehns TY, Gonschior P, Höfling B (1996) Adventitia as a target for intravascular local drug delivery. Heart 75:437–438.

    Google Scholar 

  13. Huehns TY, Krausz E, Mrochen S, Schmid M, Engelmann MG, Esin S, Schrittenloher PK, Höfling B, Günzburg WH, Nikol S (1999) Neointimal growth can be influenced by local advential gene delivery via a needle injection catheter. Athersclerosis 144:135–150.

    Google Scholar 

  14. Hugosson M, Andreu D, Boman HG, Glaser E (1994) Antibacterial peptides and mitochondrial presequences affect mitochondrial coupling, respiration and protein import. Eur J Biochem 223:1027–1033.

    Google Scholar 

  15. Innis MA, Gelfand DH (1990) Optimization of PCRs. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds.): PCR protocols: A guide to methods and applications. San Diego: Academic Press, pp. 84–91.

    Google Scholar 

  16. Javadpour MM, Juban MM, Lo WC, Bishop SM, Alberty JB, Cowell SM (1996) De novo antimicrobial peptides with low mammalian cell toxicity. J Med Chem 39:3107–3113.

    Google Scholar 

  17. Jaynes JM, Julian GR, Jeffers GW, White KL, Enright FM (1989) In vitro cytocidal effect of lytic peptides on several transformed mammalian cell lines. Pept Res 2:157–160.

    Google Scholar 

  18. Keogh MC, Chen D, Lupu F, Shaper N, Schmitt JF, Kakkar W, Lemoine N (1997) High efficiency reporter gene transfection of vascular tissue in vitro and in vivo using a cationic lipid dna complex. Gene Therapy 4:162–171.

    Google Scholar 

  19. Moore AJ, Devine DA, Bibby MC (1994) Preliminary experimental anticancer activity of cecropins. Pept Res 7:265–269.

    Google Scholar 

  20. Morishita R, Gibbons GH, Horiuchi M, Ellison KE, Nakama M, Zhang L, Kaneda Y, Ogihara T, Dzau VJ (1995) A gene therapy strategy using a transcription factor decoy of the E2F binding site inhibits smooth muscle proliferation in vivo. Proc Natl Acad Sci USA 92:5855–5859.

    Google Scholar 

  21. Nabel EG, Plautz G, Nabel GJ (1990) Site-specific gene expression in vivo by direct gene transfer into the arterial wall. Science 249:1285–1288.

    Google Scholar 

  22. Nakata Y, Shionoya S (1966) Vascular lesions due to obstruction of the vasa vasorum. Nature 212:1258–1259.

    Google Scholar 

  23. Nikol S (1996) Induction of neointimal formation by local gene transfer of the antisense senscent-cell-derived inhibitor 1 (SDI) delivered with the needle injection catheter. J Am Coll Cardiol 24(suppl):289A.

    Google Scholar 

  24. Nikol S, Huehns TY, Hofling B (1996) Molecular biology and post angioplasty restenosis. Atherosclerosis 123:17–31.

    Google Scholar 

  25. Nikol S, Huehns TY, Krausz E, Armeanu S, Engelmann MG, Winder D, Salmons B, Höfling B (1999) Needle injection catheter delivery of the gene for an antibacterial agent inhibits neointimal formation. Gene Therapy 6:737–748.

    Google Scholar 

  26. Ohno T, Gordon D, San H, Pompili VJ, Imperiale MJ, Nabel GJ (1994) Gene therapy for vascular smooth muscle cell proliferation after arterial injury. Science 265:781–784.

    Google Scholar 

  27. Reszka R (1997) Therapeutic and immunohistochemical evaluation of suicide gene transfer in an rat F98 glioblastoma model: Liposomal approach versus viral delivery. Proceedings of the 3rd International workshop on Gene Transfer in Hematology and Oncology (Abstract).

  28. Schwartz RS, Holmes DJ (1992) The restenosis paradigm revisited: An alternative proposal for cellular mechanisms. J Am Coll Cardiol 20:1284–1293.

    Google Scholar 

  29. Serruys PW, de Jaegere P, Kiemeneij F, Macaya C, Rutsch W, Heyndrickx G, Emanuelsson H, Marco J, Legrand V, Materne P (1994) A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group. N Engl J Med 331:489–495.

    Google Scholar 

  30. Shi Y, O'Brien JE, Fard A, Mannion JD, Wang D, Zalewski A (1996) Adventitial myofibroblasts contribute to neointimal formation in injured porcine coronary arteries. Circulation 94:1655–1664.

    Google Scholar 

  31. Simons M, Edelman ER, DeKeyser JL, Langer R, Rosenberg RD (1992) Antisense c-myb oligonucleotides inhibit intimal arterial smooth muscle cell accumulation in vivo. Nature 359:67–70.

    Google Scholar 

  32. Tahlil O, Brami M, Feldman LJ, Branellec D, Steg PG (1997) The dispatch catheter as a delivery tool for arterial gene transfer. Cardiovasc Res 33:181–187.

    Google Scholar 

  33. Winder D, Gunzburg WH, Erfle V, Salmons B (1998) Expression of antimicrobial peptides has an antitumour effect in human cells. Biochem Biophys Res Commun 242:608–612.

    Google Scholar 

  34. Wolinsky H, Thung SN (1990) Use of a perforated balloon catheter to deliver concentrated heparin into the wall of the normal canine artery. J Am Coll Cardiol 15:475–481.

    Google Scholar 

  35. Yang ZY, Simari RD, Perkins ND, San H, Gordon D, Nabel GJ, Nabel EG (1996) Role of the p21 cyclin dependent kinase inhibitor in limiting intimal cell proliferation in response to arterial injury. Proc Natl Acad Sci USA 93:7905–7910.

    Google Scholar 

  36. Yonemitsu Y, Kaneda Y, Tanaka S, Nakashima Y, Komori K, Sugimachi K, Sueishi K (1998) Transfer of wild-type p53 gene effectively inhibits vascular smooth muscle cell proliferation in vitro and in vivo. Circ Res 82:147–156.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Presented in part at The 41st Annual Congress, International College of Angiology, Sapporo, Japan, July 1999.

About this article

Cite this article

Nikol, S., Pelisek, J., Engelmann, M.G. et al. Prevention of restenosis using the gene for cecropin complexed with DOCSPER liposomes under optimized conditions. International Journal of Angiology 9, 87–94 (2000). https://doi.org/10.1007/BF01617047

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01617047

Keywords

Navigation