Skip to main content
Log in

Tubular profiles do not form transendothelial channels through the blood-brain barrier

  • Published:
Journal of Neurocytology

Summary

The contribution of tubular profiles within the mammalian cerebral endothelium to the formation of transcellular channels was analysed following exposure of the endothelium to native horseradish peroxidase (HRP) dissolved in saline or dimethyl sulphoxide (DMSO) administered intravenously in mice. Within 5–15 min, but not at 30 min to 2h postinjection, peroxidase-positive extravasations were evident within the parenchyma of the forebrain and brainstem of mice exposed and not exposed to DMSO. The extravasations may be associated with the rupture of interendothelial tight junctions at the level of arterioles as a consequence of the perfusion-fixation process. Ultrastructural inspection of endothelia within and away from areas of peroxidase extravasation revealed the following intraendothelial, peroxidase-positive organelles: presumptive endocytic vesicles, endosomes (a prelysosomal compartment), multivesicular and dense bodies, and tubular profiles. Statistical analysis of the concentration of HRP-labelled presumptive endocytic vesicles, which may coalesce to form tubules, within endothelia from mice injected intravenously with HRP-DMSO compared to mice receiving HRP-saline revealed no significant difference. HRP-positive tubular profiles were blunt-ended, variable in length and width, and appeared free in the cytoplasm or in continuity with dense bodies. Labelled tubules free in the cytoplasm were positioned parallel to the luminal and abluminal plasma membranes and were less frequently oblique or perpendicular to these membranes. Tubular profiles analysed in serial thin sections or with a goniometer tilt stage did not establish membrane continuities with the luminal and abluminal plasma membranes. Peroxidase-positive tubular profiles were similar morphologically to those exhibiting acid hydrolase activity but did not share morphological and enzyme cytochemical similarities with the endoplasmic reticulum that stained for glucose-6-phosphatase (G6Pase) activity. G6Pase-positive profiles of endoplasmic reticulum were not observed to contribute to a transendothelial canalicular network. Our results suggest that: (i) peroxidase-labelled tubules, acid hydrolase-positive tubules, and G6Pase-positive endoplasmic reticulum do not form transcellular channels through the cerebral endothelium; (ii) tubular profiles labelled with blood-borne HRP in the cerebral endothelium are associated with the eridosome apparatus and/or the lysosomal system of organelles; and (iii) DMSO does not appear to alter the permeability of the blood-brain barrier to blood-borne protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashwood-Smith, M. J. (1975) Current concepts concerning radioprotective and cryoprotective properties in cellular systems.Annals of the New York Academy of Sciences 243, 246–56.

    Google Scholar 

  • Balin, B. J., Broadwell, R. D., Salcman, M. &El-Kalliny, M. (1986) Avenues for entry of peripherally administered protein to the central nervous system in mouse, rat, and squirrel monkey.Journal of Comparative Neurology 251, 260–80.

    Google Scholar 

  • Brink, J. J. &Stein, D. G. (1967) Pemoline levels in brain: enhancement by dimethyl sulfoxide.Science 158, 1479–80.

    Google Scholar 

  • Broadwell, R. D. &Balin, B. J. (1985) Endocytic and exocytic pathways of the neuronal secretory process and trans-synaptic transfer of wheatgerm agglutinin-horseradish peroxidasein vivo.Journal of Comparative Neurology 242, 632–50.

    Google Scholar 

  • Broadwell, R. D., Balin, B. J. &Salcman, M. (1987a) Polarity of the blood-brain barrier to the endocytosis of exogenous protein.Wiss. Z. Karl-Marx-University. Leipzig, Math.-Naturwiss. R. 36, 170–4.

    Google Scholar 

  • Broadwell, R. D., Balin, B. J. &Salcman, M. (1987b) A novel transcytotic pathway for blood-borne protein through the blood-brain barrier.Proceedings of the National Academy of Sciences USA (in press).

  • Broadwell, R. D., Balin, B. J., Salcman, M. &Kaplan, R. S. (1983) Brain-blood barrier? Yes and No.Proceedings of the National Academy of Sciences USA 80, 7352–6.

    Google Scholar 

  • Broadwell, R. D. &Brightman, M. W. (1979) Cytochemistry of undamaged neurons transporting exogenous proteinin vivo.Journal of Comparative Neurology 185, 31–74.

    Google Scholar 

  • Broadwell, R. D. &Brightman, M. W. (1983) Horseradish peroxidase: a tool to study the neuroendocrine cell and other peptide-secreting cells.Methods in Enzymology 103, 187–218.

    Google Scholar 

  • Broadwell, R. D., Brightman, M. W. &Oliver, C. (1980) Neuronal transport of acid hydrolases and peroxidase within the lysosomal system of organelles: involvement of agranular reticulum-like cisterns.Journal of Comparative Neurology 190, 519–32.

    Google Scholar 

  • Broadwell, R. D. &Cataldo, A. M. (1983) The neuronal endoplasmic reticulum. Its cytochemistry and contribution to the endomembrane system. I. Cell bodies and dendrites.Journal of Histochemistry and Cytochemistry 31, 1077–88.

    Google Scholar 

  • Broadwell, R. D. &Cataldo, A. M. (1984) The neuronal endoplasmic feticulum. Its cytochemistry and contribution to the endomembrane system. II. Axons and terminals.Journal of Comparative Neurology 230, 231–48.

    Google Scholar 

  • Broadwell, R. D. &Oliver, C. (1983) An enzyme cytochemical study of the endocytic pathways in anterior pituitary cells of the mouse in vivo.Journal of Histochemistry and Cytochemistry 31, 325–35.

    Google Scholar 

  • Broadwell, R. D. &Salcman, M. (1981) Expanding the definition of the blood-brain barrier to protein.Proceedings of the National Academy of Sciences USA 78, 7820–4.

    Google Scholar 

  • Broadwell, R. D. &Salcman, M. (1981) Expanding the definition of the blood-brain barrier to protein.Proceedings of the National Academy of Sciences USA 78, 7820–4.

    Google Scholar 

  • Bullard, D. E. &Bigner, R. D. (1984) Blood-brain barrier disruption in immature Fischer 344 rats.Journal of Neurosurgery 60, 743–50.

    Google Scholar 

  • Bundgaard, M. (1983) Vesicular transport in capillary endothelium: does it occur?Federation Proceedings 42, 2425–30.

    Google Scholar 

  • Bundgaard, M., Frokjaer-Jensen, J. &Crone, C. (1979) Endothelial plasmalemmal vesicles as elements in a system of branching invaginations from the cell surface.Proceedings of the National Academy of Sciences USA 76, 6439–42.

    Google Scholar 

  • Bundgaard, M., Hagman, P. &Crone, C. (1983) The three-dimensional organization of plasmalemmal vesicular profiles in the endothelium of rat heart capillaries.Microvascular Research 25, 358–68.

    Google Scholar 

  • Castejon, O. J. (1984) Formation of transendothelial channels in traumatic human brain edema.Pathology Research Practice 179, 7–12.

    Google Scholar 

  • Cataldo, A. M. &Broadwell, R. D. (1986a) Cytochemical identification of cerebral glycogen and glucose-6-phosphatase activity under normal and experimental conditions. I. Neurons and glia.Journal of Electron Microscopy Technique 3, 413–37.

    Google Scholar 

  • Cataldo, A. M. &Broadwell, R. D. (1986b) Cytochemical identification of cerebral glycogen and glucose-6-phosphatase activity under normal and experimental conditions. II. Choroid plexus and ependymal epithelia, endothelia and pericytes.Journal of Neurocytology 15, 511–24.

    Google Scholar 

  • Coomber, B. L. &Stewart, P. A. (1986) Three-dimensional reconstruction of vesicles in endothelium of blood-brain barrier versus highly permeable micro-vessels.Anatomical Record 215, 256–61.

    Google Scholar 

  • Cotran, R. S. &Karnovsky, M. J. (1967) Vascular leakage induced by horseradish peroxidase in the rat.Proceedings of the Society for Experimental Biology 126, 557–6.

    Google Scholar 

  • Dautry-Varsat, A. &Lodish, H. F. (1983) The Golgi complex and the sorting of membrane and secreted proteins.Trends in Neuroscience 6, 484–90.

    Google Scholar 

  • Dautry-Varsat, A. &Lodish, H. F. (1984) How receptors bring proteins into cells.Scientific American 250, 52–8.

    Google Scholar 

  • DeBruyn, P. P. H., Michelson, S. &Decker, R. P. (1975) Endocytosis, transfer tubules, and lysosomal activity in myeloid sinusoidal endothelium.Journal of Ultrastructure Research 53, 133–51.

    Google Scholar 

  • DeBruyn, P. P. H., Michelson, S. &Becker, R. P. (1977) Phosphotungstic acid as a marker for the endocyticlysosomal system (vacuolar apparatus) including transfer tubules of the lining cells of the sinusoids in bone marrow and liver.Journal of Ultrastructure Research 58, 87–95.

    Google Scholar 

  • Doty, S. B., Smith, C. E., Hand, A. R. &Oliver, C. (1977) Inorganic trimetaphosphatase as a histochemical marker for lysosomes in light and electron microscopy.Journal of Histochemistry and Cytochemistry 25, 1381.

    Google Scholar 

  • Farrell, C. L. &Shivers, R. R. (1984) Capillary junctions of the rat are not affected by osmotic opening of the blood-brain barrier.Acta neuropathologica (Berlin) 63, 179–89.

    Google Scholar 

  • Frokjaer-Jensen, J. (1980) Three-dimensional organization of plasmalemmal vesicles in endothelial cells. An analysis by serial sectioning of frog mesenteric capillaries.Journal of Ultrastructure Research 73, 9–20.

    Google Scholar 

  • Geuze, H. J., Slot, J. &Strous, A. M. (1984) Intracellular receptor sorting during endocytosis: comparative immunoelectron microscopy of multiple receptors in rat liver.Cell 37, 195–204.

    Google Scholar 

  • Gomori, G. (1952)Microscopic Histochemistry: Principles and Practice, pp. 189–273. Chicago: University of Chicago Press.

    Google Scholar 

  • Graham, R. C. &Karnovsky, M. J. (1966) The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique.Journal of Histochemistry and Cytochemistry 14, 291–302.

    Google Scholar 

  • Greig, N. H., Sweeney, D. J. &Rapoport, S. I. (1985) Inability of dimethyl sulfoxide to increase brain uptake of water soluble compounds: implication to chemotherapy for brain tumors.Cancer Treatment Reports 69, 305–12.

    Google Scholar 

  • Hansson, H. A., Johansson, B. &Blomstrand, C. (1975) Ultrastructural studies on cerebrovascular permeability in acute hypertension.Acta neuropathologica (Berlin) 32, 187–98.

    Google Scholar 

  • Hedley-Whyte, E. T., Lorenzo, A. V. &Hsu, D. W. (1977) Protein transport across cerebral vessels during metrazole-induced convulsions.American Journal of Physiology 233, C74-C85.

    Google Scholar 

  • Helenius, A., Mellman, I., Wall, D. &Hubbard, A. (1983) Endosomes.Trends in Biochemical Sciences 8, 245–9.

    Google Scholar 

  • Horton, J. C. &Hedley-Whyte, E. T. (1979) Protein movement across the blood-brain barrier in hypervolemia.Brain Research 169, 610–14.

    Google Scholar 

  • Hugon, J. S. &Borgers, M. (1966) A direct lead method for the electron microscopic visualization of alkaline phosphatase activity.Journal of Histochemistry and Cytochemistry 14, 429.

    Google Scholar 

  • Jacob, S. W., Bischel, M. &Herschler, R. J. (1964) Dimethyl sulfoxide: effects on the permeability of biologic membranes (preliminary report).Current Therapeutic Research 6, 193–8.

    Google Scholar 

  • Jacob, S. W. &Herschler, R. J. (1975) Biological actions of dimethyl-sulfoxide.Annals of the New York Academy of Sciences 243, 505–8.

    Google Scholar 

  • Jóo, F. (1971) Increased production of coated vesicles in the brain capillaries during enhanced permeability of the blood-brain barrier.British Journal of Experimental Pathology 52, 646–9.

    Google Scholar 

  • Karnovsky, M. J. (1971) Use of ferrocyanide-reduced osmium tetroxide in electron microscopy.Journal of Cell Biology 51, 146a.

    Google Scholar 

  • Keane, D. M., Gray, I. &Panuska, J. A. (1977) Ineffectiveness of dimethyl sulfoxide in altering the permeability of the blood-brain barrier.Cryobiology 14, 592–7.

    Google Scholar 

  • Kocsis, J. J., Harkaway, S. &Vogel, W. H. (1968) Dimethyl sulfoxide: breakdown of blood-brain barrier?Science 160, 1472–3.

    Google Scholar 

  • Lossinsky, A. S., Garcia, J. H., Iwanowski, L. &Lightfoote, W. E., JR (1979) New ultrastructural evidence for a protein transport system in endothelial cells of gerbil brains.Acta neuropathologica (Berlin) 47, 105–10.

    Google Scholar 

  • Lossinsky, A. S., Vorbrodt, A. W. &,Wisniewski, H. M. (1983) Ultracytochemical studies of vesicular canalicular transport structures in the injured mammalian blood-brain barrier.Acta neuropathologica (Berlin) 61, 239–45.

    Google Scholar 

  • Lossinsky, A. S., Vorbrodt, A. W. &Wisniewski, H. M. (1986) Characterization of endothelial cell transport in the developing mouse blood-brain barrier.Developmental Neuroscience 8, 61–75.

    Google Scholar 

  • Lossinsky, A. S., Vorbrodt, A. W., Wisniewski, H. M. &Iwanowski, L. (1981) Ultracytochemical evidence for endothelial channel-lysosome connections in mouse brain following blood-brain barrier changes.Acta neuropathologica (Berlin) 53, 197–202.

    Google Scholar 

  • Lovelock, J. E. &Bishop, M. W. H. (1959) Prevention of freezing damage in living cells by dimethyl sulfoxide.Nature 183, 1394–5.

    Google Scholar 

  • Mendenhall, W. (1983)Introduction to Probability and Statistics, Vol. XII, pp. 646. Boston: Axbury Press.

    Google Scholar 

  • Milici, A. J., L'Hernault, N. &Palade, G. E. (1985) Surface densities of diaphragmed fenestrae and transendothelial channels in different murine capillary beds.Circulation Research 56, 709–17.

    Google Scholar 

  • Møllgard, K. &Saunders, N. R. (1975) Complex tight junctions of epithelial and of endothelial cells in early foetal brain.Journal of Neurocytology 4, 453–68.

    Google Scholar 

  • Nichols, B. A. (1982) Uptake and digestion of horseradish peroxidase in rabbit alveolar macrophages. Formation of a pathway connecting lysosomes to the cell surface.Laboratory Investigation 47, 235–46.

    Google Scholar 

  • Oliver, C. (1980) Cytochemical localization of acid phosphatase and trimetaphosphatase activities in exocrine acinar cells.Journal of Histochemistry and Cytochemistry 28, 78.

    Google Scholar 

  • Oliver, C. (1983) Characterization of basal lysosomes in exocrine acinar cells.Journal of Histochemistry and Cytochemistry 31, 1209–16.

    Google Scholar 

  • Povlishock, J. T., Becker, D. P., Sullivan, H. G. &Miller, J. D. (1978) Vascular permeability alterations to horseradish peroxidase in experimental brain injury.Brain Research 153, 222–39.

    Google Scholar 

  • Rammler, D. H. &Zaffaroni, A. (1967) Biological implications of DMSO based on a review of its chemical properties.Annals of the New York Academy of Sciences 141, 13–23.

    Google Scholar 

  • Rosenkrantz, H., Hadidian, A., Seay, H. &Mason, M. M. (1963) Dimethyl sulfoxide: its steroid solubility and endocrinologic and pharmacologic-toxicologic characteristics.Cancer Chemotherapy Reports 31, 7–24.

    Google Scholar 

  • Shivers, R. R., Edmonds, C. L. &Del Maestro, R. F. (1984) Microvascular permeability in induced astrocytomas and peritumor neuropil of rat brain.Acta neuropathologica (Berlin) 64, 192–202.

    Google Scholar 

  • Simionescu, N., Simionescu, M. &Palade, G. E. (1975) Permeability of muscle capillaries to small heme-peptides. Evidence for the existence of patent transendothelial channels.Journal of Cell Biology 64, 586–607.

    Google Scholar 

  • Simionescu, N., Simionescu, M. &Palade, G. E. (1976) Recent studies on vascular endothelium.Annals of the New York Academy of Sciences 275, 64–75.

    Google Scholar 

  • Simionescu, N., Simionescu, M. &Palade, G. E. (1978) Structural basis of permeability in sequential segments of the microvasculature of the diaphragm. II. Pathways followed by microperoxidase across the endothelium.Microvascular Research 15, 17–36.

    Google Scholar 

  • Tagami, M., Kubota, A., Sunaga, T., Fujino, H., Maezawa, H., Kiharo, M., Naro, Y. &Yamori, Y. (1983) Increased transendothelial channel transport of cerebral capillary endothelium in stroke-prone SHR.Stroke 14, 591–6.

    Google Scholar 

  • Van Deurs, B. (1977) Vesicular transport of horseradish peroxidase from brain to blood in segments of the cerebral microvasculature in adult mice.Brain Research 124, 1–8.

    Google Scholar 

  • Vorbrodt, A. W., Lossinsky, A. S. &Wisniewski, H. M. (1986) Localization of alkaline phosphatase activity in endothelia of developing and mature mouse blood-brain barrier.Developmental Neuroscience 8, 1–13.

    Google Scholar 

  • Vorbrodt, A. W., Lossinsky, A. S., Wisniewski, H. M., Moretz, R. C. &Iwanowski, L. (1981) Ultratructural cytochemical studies of cerebral microvasculature in scrapie infected mice.Acta neuropathologica (Berlin) 53, 202–11.

    Google Scholar 

  • Vorbrodt, A. W., Lossinsky, A. S., Wisniewski, H. M., Suzaki, R., Yamaguchi, T., Masaoka, H. &Klatzo, I. (1985) Ultrastructural observations on the transvascular route of protein removal in vasogenic brain edema.Acta neuropathologica (Berlin) 63, 265–73.

    Google Scholar 

  • Wagner, H.-J., Pilgrim, CH. &Brandl, J. (1974) Penetration and removal of cerebral horseradish peroxidase injected into the cerebrospinal fluid: role of cerebral perivascular spaces, endothelium and microglia.Acta neuropathologica (Berlin) 27, 299–315.

    Google Scholar 

  • Westergaard, E., Go, K., Klatzo, I. &Spatz, M. (1976) Increased permeability of cerebral vessels to HRP induced by ischemia in Mongolian gerbils.Acta neuropathologica (Berlin) 35, 307–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balin, B.J., Broadwell, R.D. & Salcman, M. Tubular profiles do not form transendothelial channels through the blood-brain barrier. J Neurocytol 16, 721–735 (1987). https://doi.org/10.1007/BF01611981

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01611981

Keywords

Navigation