Skip to main content
Log in

On the rate of asymptotic eigenvalue degeneracy

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The gap between asymptotically degenerate eigenvalues of one-dimensional Schrödinger operators is estimated. The procedure is illustrated for two examples, one where the solutions of Schrödinger's equation are explicitly known and one where they are not. For the latter case a comparison theorem for ordinary differential equations is required. An incidental result is that a semiclassical (W-K-B) method gives a much better approximation to the logarithmic derivative of a wave-function than to the wave-function itself; explicit error-bounds for the logarithmic derivative are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thompson, C.J., Kac, M.: Phase transitions and eigenvalue degeneracy of a one-dimensional anharmonic oscillator. Studies Appl. Math.48, 257–264 (1969)

    Google Scholar 

  2. Isaacson, D.: Singular perturbations and asymptotic eigenvalue degeneracy. Commun. Pure Appl. Math.29, 531–551 (1976)

    Google Scholar 

  3. Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. 4. New York: Academic Press 1978

    Google Scholar 

  4. Kato, T.: Perturbation theory for linear operators. Die Grundlehren der mathematischen Wissenschaften, Vol. 132. Berlin-Heidelberg-New York: Springer-Verlag 1966

    Google Scholar 

  5. Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. III. New York: Academic Press 1978

    Google Scholar 

  6. Kac, M.: Mathematical mechanisms of phase transitions. In: Brandeis University Summer Institute in Theoretical Physics 1966, Vol. 1 (eds. M. Chrétien, E. P. Gross, S. Deser). New York: Gordon and Breach 1968

    Google Scholar 

  7. Glimm, J., Jaffe, A., Spencer, T.: Phase transitions for φ 42 quantum fields. Commun. math. Phys.45, 203–216 (1975)

    Google Scholar 

  8. Simon, B.: Coupling constant analyticity for the anharmonic oscillator. Ann. Phys.58, 76–136 (1970)

    Google Scholar 

  9. Loeffel, J.J., Martin, A.: Propriétés analytiques des niveaux de l'oscillateur anharmonique et convergence des approximants de Padé. CERN Ref. TH. 1167 (1970)

  10. Hsieh, P.-F., Sibuya, Y.: On the asymptotic integration of second order linear ordinary differential equations with polynomial coefficients. J. Math. Anal. Appl.16, 84–103 (1966)

    Google Scholar 

  11. Whittaker, E.T., Watson, G.N.: A course of modern analysis. Cambridge: Cambridge University Press 1969

    Google Scholar 

  12. Abramowitz, M., Stegun, I.A., (eds.): Handbook of mathematical functions. Washington: National Bureau of Standards 1964

    Google Scholar 

  13. Coddington, E.A., Levinson, N.: The theory of differential equations. New York: McGraw-Hill 1955

    Google Scholar 

  14. Gildener, E., Patrascioiu, A.: Pseudoparticle contributions to the energy spectrum of a one-dimensional system. Phys. Rev. D16, 423–430 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrell, E.M. On the rate of asymptotic eigenvalue degeneracy. Commun.Math. Phys. 60, 73–95 (1978). https://doi.org/10.1007/BF01609474

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01609474

Keywords

Navigation