Skip to main content
Log in

On measures, convex cones, and foundations of thermodynamics I. Systems with vector-valued actions

  • Published:
Czechoslovak Journal of Physics B Aims and scope

Abstract

In this two-part paper, a theory of non-equilibrium thermodynamic systems (“with memory”) is developed. The emphasis is laid upon the possibility of presenting the non-equilibrium thermodynamics deductively starting from the basic laws in a form which is capable of a direct experimental verification. This first part introduces the concept of a system with a vector-valued action which underlies the concept of a thermodynamic system (introduced in the second part). A special case of a vector-valued action is a real-valued action; the theory of real-valued actions with the Clausius property due to Coleman and Owen is briefly sketched. A subintegrating functional for a vector-valued action is a non-zero linear functional whose composition with the action gives a real-valued action with the Clausius property. For special, actions which have relevance to thermodynamics the existence of a subintegrating functional with some extra properties is equivalent to the existence of the absolute temperature scale or to the existence of the mechanical equivalent of a unit of heat. The main purpose of the first part of the paper is to give conditions for the existence of a subintegrating functional which is positive on a given set of vectors. These conditions will be shown in the second part to be the abstract analogues of the verbal statements of the laws of thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fermi E., Thermodynamics. Prentice-Hall, New York 1937.

    Google Scholar 

  2. Sommerfeld A., Thermodynamik und Statistik. Wiesbaden 1952.

  3. Kvasnica J., Termodynamika. SNTL, Praha 1965.

    Google Scholar 

  4. Born M., Kritische Betrachtungen zur traditionellen Darstellung der Thermodynamik. Physik. Zschr.22 (1920), 218, 249, 282.

    Google Scholar 

  5. Buchdahl H. A., A formal treatment of the consequences of the second law of thermodynamics in Carathéodory's formulation. Z. Phys.152 (1958), 425.

    Google Scholar 

  6. Giles R., Mathematical foundations of thermodynamics. Pergamon, London 1964.

    Google Scholar 

  7. Serrin J., Foundations of classical thermodynamics. Lecture notes. University of Chicago, Chicago 1975.

    Google Scholar 

  8. Truesdell C., Tragicomedy of classical thermodynamics. Springer, Berlin-Heidelberg-New York 1971.

    Google Scholar 

  9. Truesdell C., Rational thermodynamics. Mc Graw-Hill, New York 1969.

    Google Scholar 

  10. Truesdell C., Absolute temperatures as a consequence of Carnot's general axiom. Arch. Hist. Exact Sci.20 (1979), 357.

    Google Scholar 

  11. Truesdell C., Bharatha S., The concepts and logic of classical thermodynamics as a theory of heat engines. Springer, New York-Heidelberg-Berlin 1977.

    Google Scholar 

  12. Perzyna P., Thermodynamic theory of viscoplasticity. Advan. Appl. Mech.11 (1971), 313.

    Google Scholar 

  13. Hutter K., The foundations of thermodynamics, its basic postulates and implications. A review of modern thermodynamics. Acta Mechanica27 (1977), 1.

    Google Scholar 

  14. Meixner J., Processes in simple thermodynamic materials. Arch. Rational Mech. Anal.33 (1969), 33.

    Google Scholar 

  15. Planck M., Wissenschaftliche Selbstbiographie. Johan Ambrosius Barth, Leipzig 1970.

    Google Scholar 

  16. Carathéodory C., Untersuchungen über die Grundlagen der Thermodynamik. Math. Ann.67 (1909), 355.

    Google Scholar 

  17. Boyling J. B., Carathéodory's principle and the existence of global integrating factors. Commun. Math. Phys.10 (1968), 52.

    Google Scholar 

  18. Boyling J. B., An axiomatic approach to classical thermodynamics. Proc. R. Soc. Lond. A329 (1972), 35.

    Google Scholar 

  19. Boyling J. B., Thermodynamics of non-differentiable systems. Internat. J. Theoret. Phys.9 (1974), 379.

    Google Scholar 

  20. Rastall P., Classical thermodynamics simplified. J. Math. Phys.11 (197), 2955.

  21. Bree J., Beevers C. E., Non-equilibrium thermodynamics of continuous media. J. Non-Equilib. Thermodyn.4 (1979), 159.

    Google Scholar 

  22. Coleman B. D., Noll W., The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. Anal.13 (1963), 167.

    Google Scholar 

  23. Coleman B. D., Thermodynamics of materials with memory. Arch. Rational Mech. Anal.17 (1964), 1.

    Google Scholar 

  24. Day W. A., The thermodynamics of simple materials with fading memory. Springer, Berlin-Heidelberg-New York 1972.

    Google Scholar 

  25. Coleman B. D., Owen D. R., A mathematical foundation for thermodynamics. Arch. Rational Mech. Anal.54 (1974), 1.

    Google Scholar 

  26. Fosdick R., Serrin J., Global properties of continuum thermodynamic processes. Arch. Rational Mech. Anal.59 (1975), 97.

    Google Scholar 

  27. Day W. A., A theory of thermodynamics for materials with memory. Arch. Rational Mech. Anal.34 (1969), 85.

    Google Scholar 

  28. Day W. A., Entropy and hidden variables in continuum thermodynamics. Arch. Rational Mech. Anal.62 (1976), 367.

    Google Scholar 

  29. Coleman B. D., Owen D. R., Thermodynamics and elastic-plastic materials. Arch. Rational Mech. Anal.59 (1975), 25.

    Google Scholar 

  30. Coleman B. D.,Owen D. R., On the thermodynamics of elastic-plastic materials with temperature-dependent moduli and yield stresses. To appear in Arch. Rational Mech. Anal.

  31. Müller I., Entropy in non-equilibrium — A challenge to mathematicians. In Trends in application of pure mathematics to mechanic. Vol. 2. (Ed. H. Zorski.) Pitman Publ. London, San Francisco, Melbourne 1979.

    Google Scholar 

  32. Serrin J., The concepts of thermodynamics. In Contemporary developments in Continuum mechanics and partial differential equations. (Ed. G. M. de La Penha, and L. A. Medeiros). North-Holland, Amsterdam 1978.

    Google Scholar 

  33. šilhavý M., A condition equivalent to the existence of non-equilibrium entropy and temperature for materials with internal variables. Arch. Rational Mech. Anal.68 (1978), 299.

    Google Scholar 

  34. šilhavý M., On the Clausius inequality. Submitted to Arch. Rational Mech. Anal.

  35. Gurtin M. E., Williams W. O., An axiomatic foundation for continuum thermodynamics. Arch. Rational Mech. Anal.26 (1967), 83.

    Google Scholar 

  36. Müller I., On the entropy inequality. Arch. Rational Mech. Anal.26 (1967), 118.

    Google Scholar 

  37. Müller I., The coldness, a universal function in thermoeleastic bodies. Arch. Rational Mech. Anal.41 (1971), 319.

    Google Scholar 

  38. Meixner J., Thermodynamik der Vorgänge in einfachen fluiden Medien und die Charakterisierung der Thermodynamik irreversibler Prozesse. Z. Physik219 (1969), 79.

    Google Scholar 

  39. Wilmański K., On thermodynamics and functions of states of nonisolated systems. Arch. Rational Mech. Anal.45 (1972), 251.

    Google Scholar 

  40. Wilmański K., Podstawy termodynamiki fenomenologicznej. Panstwowe wydawnictwo naukowe, Warszawa 1974.

    Google Scholar 

  41. Day W. A., Continuum thermodynamics based on a notion of rate of loss of information. Arch. Rational Mech. Anal.59 (1975), 53.

    Google Scholar 

  42. Day W. A., An information theory approach to the symmetry, monotonicity and concavity of the creep function in linear viscoelasticity. Arch. Rational Mech. Anal.65 (1977), 47.

    Google Scholar 

  43. Beevers C. E., Bree J., A thermodynamic theory of isotropic elastic-plastic materials. Archives of Mechanics31 (1979), 385.

    Google Scholar 

  44. Green A. E., Naghdi P. M., On thermodynamics and the nature of the second law. Proc. R. Soc. Lond. A357 (1977), 253.

    Google Scholar 

  45. šilhavý M., On measures, convex cones, and foundations of thermodynamics. II. Thermodynamic systems. Czech. J. Phys. B30 (1980), 961.

    Google Scholar 

  46. Noll W., A new mathematical theory of simple materials. Arch. Rational Mech. Anal.48 (1972), 1.

    Google Scholar 

  47. Gurtin M. E., Thermodynamics and stability. Arch. Rational Mech. Anal.59 (1975), 63.

    Google Scholar 

  48. Halmos P. R., Measure theory. Van Nostrand, New York 1950.

    Google Scholar 

  49. Day M. M., Normed linear spaces. Springer, Berlin 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

I wish to express my deep thanks to Dr. V. Alda CSc for discussions concerning the problem of separation of sets in linear spaces, and to Dr. J. Kratochvíl CSc for discussions on foundations of thermodynamics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

šilhavý, M. On measures, convex cones, and foundations of thermodynamics I. Systems with vector-valued actions. Czech J Phys 30, 841–861 (1980). https://doi.org/10.1007/BF01604669

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01604669

Keywords

Navigation