Skip to main content
Log in

Efficient VLSI array processing structures for adaptive quadratic digital filters

  • Published:
Circuits, Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper we introduce a class of efficient architectures for adaptive quadratic digital filters. These architectures are based on the LMS algorithm and use the rank compressed lower-upper (LU) triangular deomposition method. These architectures exhibit high parallelism as well as great modularity and regularity. We also consider affiliated VLSI array processing structures and compare these in terms of hardware cost and data throughput delay. For comparison purposes, the distributed arithmetic structures of adaptive quadratic filters are also included in the paper. Finally, the convergence performance of the adaptive quadratic filters is tested via benchmark simulation examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Biglieri, Theory of Volterra processors and some applications,Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing, pp. 294–297, Paris, May 1982.

  2. B. Picinbono, Quadratic filters,Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing, pp. 298–301, Paris, May 1982.

  3. G. L. Sicuranza, Theory and realization of nonlinear digital filters,Proc. IEEE Int. Symp. Circuits and Systems, pp. 242–245, Montreal, May 1984.

  4. G. L. Sicuranza, Nonlinear digital filter realization by distributed arithmetic,IEEE Trans. Acoust. Speech Signal Process.,33, 939–945, 1985.

    Google Scholar 

  5. G. L. Sicuranza and G. Ramponi, Distributed arithmetic implementation of nonlinear echo cancellers,Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing, Tampa, FL, March 1985.

  6. H. H. Chiang, C. L. Nikias, and A. N. Venetsanopoulos, Efficient implementations of quadratic digital filters,IEEE Trans. Acoust. Speech Signal Process.,34, 1511–1528, 1986.

    Google Scholar 

  7. H. H. Chiang, C. L. Nikias, and A. N. Venetsanopoulos, Reconfigurable systolic array implementation of quadratic digital filters,IEEE Trans. Circuits and Systems,33, 845–847, 1986.

    Google Scholar 

  8. G. L. Sicuranza, A. Bucconi, and P. Mitri, Adaptive echo cancellation with nonlinear digital filters,Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing, pp. 3.10.1–3.10.4, San Diego, CA, March 1984.

  9. G. L. Sicuranza and G. Ramponi, Adaptive nonlinear digital filters using distributed arithmetic,IEEE Trans. Acoust. Speech Signal Process.,34, 518–526, 1986.

    Google Scholar 

  10. T. E. McCannon, N. C. Gallagher, D. Minoo-Hamedani, and G. L. Wise, On the design of nonlinear discrete-time predictors,IEEE Trans. Inform. Theory,28, 366–371, 1982.

    Google Scholar 

  11. O. Agazzi, D. G. Messerschmitt, and D. A. Hodges, Nonlinear echo cancellation of data signals,IEEE Trans. Commun.,30, 2421–2433, 1982.

    Google Scholar 

  12. E. Biglieri, A. Gersho, R. D. Gitlin, and T. L. Lim, Adaptive cancellation of nonlinear intersymbol interference for voiceband data transmission,IEEE J. Select. Areas Comm.,2, 765–777, 1984.

    Google Scholar 

  13. D. D. Falconer, Adaptive equalization of channel nonlinearities in QAM data transmission systems,Bell System Tech. J.,57, 2589–2611, 1978.

    Google Scholar 

  14. S. Bendetto and E. Biglieri, Nonlinear equalization of digital satellite channels,Proc. 9th AIAA Conf. Commun. Satellite Systems, San Diego, CA, March 1982.

  15. J. C. Slapeton and S. C. Bass, Adaptive noise cancellation for a class of nonlinear dynamic reference channels,Proc. Int. Symp. Circuits and Systems, pp. 268–271, Montreal, May 1984.

  16. A. C. P. Loui, Modular implementation of two-dimensional and quadratic digital filters, M.A.Sc. Thesis, Department of Electrical Engineering, University of Toronto, Toronto, 1986.

    Google Scholar 

  17. C. L. Nikias, A. P. Chrysafis, and A. N. Venetsanopoulos, The LU decomposition theorem and its implications to the realization of two-dimensional digital filters,IEEE Trans. Acoust. Speech Signal Process.,33, 694–711, 1985.

    Google Scholar 

  18. A. N. Venetsanopoulos and C. L. Nikias, Design and realization of multidimensional digital filters via matrix decomposition approaches, inAdvances in Geophysical Data Processing, vol. 2, M. Simaan (ed.), JAI Press, Greenwich, CT, pp. 263–305, 1985.

    Google Scholar 

  19. H. T. Kung, Why systolic architectures?,IEEE Trans. Comput.,15, 37–46, 1982.

    Google Scholar 

  20. C. Mead and L. Conway,Introduction to VLSI Systems, Addison-Wesley, Reading, MA, 1980.

    Google Scholar 

  21. J. S. Ward, P. Barton, J. B. G. Roberts, and B. L. Stanier, Figures of merit for VLSI implementations of digital signal processing algorithms,Proc. IEEE,131, 64–70, 1984.

    Google Scholar 

  22. B. Widrow and S. D. Stearns,Adaptive Signal Processing, Prentice-Hall, Englewood Cliffs, NJ, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by National Science Foundation Grant ECS-8601307.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lou, Y., Nikias, C.L. & Venetsanopoulos, A.N. Efficient VLSI array processing structures for adaptive quadratic digital filters. Circuits Systems and Signal Process 7, 253–273 (1988). https://doi.org/10.1007/BF01602100

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01602100

Keywords

Navigation