Skip to main content
Log in

Geometric theory and feedback invariants of generalized linear systems: A matrix pencil approach

  • Published:
Circuits, Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Generalized linear systems are classified according to their algebraic structure and their regularizability and normalizability properties under generalized state feedback are investigated. New feedback invariants are introduced in terms of the input-space restriction pencil and the Plücker matrix of the system. It is shown that the classification of subspaces of the state space of generalized linear systems is reduced to an equivalent problem of classifying the subspacesV of the domain of an ordered pair (F, G), F, Gεℝm×n. The set of strict equivalence invariants of the restriction pencil (F, G)/V provides a complete, basis-free algebraic characterization and leads to the definition of notions of geometric invariance. The key geometric notions that emerge are those of (F, G)-, (G, F)-, complete-(F, G)-, partitioned(F, G)-, cyclic-, and semicyclic-invariant subspaces. A complete set of geometric algorithms leading to the computation of the above families is also given. The above families of invariant subspaces are characterized in terms of the invariants of (F, G)/V, and this provides the links with their dynamic characterization. These results provide an “open-loop” or “feedback-free” unifying treatment of spaces of generalized systems, which for the case of proper systems is reduced to the standard geometric theory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Aplevich, Minimal representations of implicit linear systems,Automatica,21 (1985), 259–269.

    Google Scholar 

  2. P. Bernhard, On singular implicit linear dynamical systems,SIAM J. Control Optim.,20 (1982) 612–633.

    Google Scholar 

  3. J. D. Cobb, Fundamental properties of the manifold of singular and regular systems,J. Math. Anal. Appl.,120 (1986), 328–353.

    Google Scholar 

  4. G. D. Forney, Minimal bases of rational vector spaces with applications to multivariable linear systems,SIAM J. Control Optim.,13 (1975), 493–520.

    Google Scholar 

  5. F. R. Gantmacher,Theory of Matrices, Vol. 2, Chelsea, New York (1959).

    Google Scholar 

  6. C. Giannakopoulos and N. Karcanias, Pole assignment of strictly proper and proper systems by constant output feedback,Internat. J. Control,42 (1985), 543–565.

    Google Scholar 

  7. S. Jaffe and N. Karcanias, Matrix pencil characterization of almost (A, B)-invariant subspaces: A classification of geometric concepts,Internat. J. Control,33 (1981), 51–93.

    Google Scholar 

  8. G. Kalogeropoulos, Matrix Pencils and Linear Systems Theory, Ph.D. Thesis, Control Engineering Centre, The City University, London (1985).

    Google Scholar 

  9. N. Karcanias, Matrix pencil approach to geometric system theory,Proc. IEE,126 (1979), 585–590.

    Google Scholar 

  10. N. Karcanias, Regular state-space realizations of singular system control problems,Proc. 26th IEEE CDC, Los Angeles, Dec. 9–11, 1987, Vol. 2, pp. 1144–1146.

    Google Scholar 

  11. N. Karcanias and C. Giannakopoulos, Grassmann invariants, almost zeros and the determinantal zero, pole assignment problems of linear systems,Internat. J. Control,40 (1984), 673–698.

    Google Scholar 

  12. N. Karcanias and G. E. Hayton, Generalized autonomous dynamical systems, algebraic duality and geometric theory,Proc. IFAC VIII Triennial World Congress, Kyoto, 1981.

  13. N. Karcanias and G. Kalogeropoulos, Bilinear strict equivalence of matrix pencils, inProc. 4th IMA Conference on Control Theory, (P. A. Cook, ed.), Academic Press, New York (1985), pp. 77–86.

    Google Scholar 

  14. N. Karcanias and G. Kalogeropoulos, A matrix pencil approach to the study of singular systems: Algebraic and geometric aspects,Proc. Internat. Symp. on Singular Systems, Atlanta, Dec. 1987.

  15. N. Karcanias, B. Laios, and C. Giannakopoulos, The decentralized determinantal assignment problem: Fixed and almost fixed modes and zeros,Internat. J. Control,48 (1988), 129–147.

    Google Scholar 

  16. F. L. Lewis, A survey of linear singular systems,Circuits Systems Signal Process.,5 (1986), 3–36.

    Google Scholar 

  17. J. J. Loiseau, Some geometric considerations about the Kronecker normal form,Internat. J. Control,42 (1985), 1411–1431.

    Google Scholar 

  18. D. G. Luenberger, Time-invariant descriptor systems,Automatica,14 (1978), 473–480.

    Google Scholar 

  19. M. Malabre, More geometry about singular systems,Proc. 26th IEEE CDC, Los Angeles, Dec. 9–11, 1987.

  20. M. Marcus,Finite Dimensional Multilinear Algebra (in two parts), Marcel Dekker, New York (1973).

    Google Scholar 

  21. M. Marcus and H. Minc,A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Boston (1964).

    Google Scholar 

  22. K. Ozcaldiran, Control of Descriptor Systems, Ph.D. Thesis, School of Electrical Engineering, Georgia Institute of Technology, Atlanta (1985).

    Google Scholar 

  23. H. H. Rosenbrock, Structural properties of linear dynamical systems,Internat. J. Control,20 (1974) 191–202.

    Google Scholar 

  24. M. A. Shayman and Z. Zhou, Feedback control and classification of generalized linear systems, Preprint (1986).

  25. H. W. Turnbull and A. C. Aitken,An Introduction to the Theory of Canonical Matrices, Dover, New York (1961).

    Google Scholar 

  26. G. C. Verghese, Infinite-Frequency Behavior in Generalized Dynamical Systems, Ph.D. Thesis, Department of Electrical Engineering, Stanford University (1978).

  27. M. E. Warren and A. E. Eckberg, On the dimensions of controllability subspaces: A characterization via polynomial matrices and Kronecker invariants,SIAM J. Control Optim.,13 (1975), 434–445.

    Google Scholar 

  28. J. H. Wilkinson, Linear differential equations and Kronecker's canonical form, inRecent Advances in Numerical Analysis (C. de Boor and G. Golumb, eds.), Academic Press, New York (1978).

    Google Scholar 

  29. J. C. Willems, Almost invariant subspaces. An approach to high gain feedback design, Parts I and II,IEEE Trans. Automat. Control,26 (1981), 235–252;27 (1982) 1071–1085.

    Google Scholar 

  30. W. M. Wonham,Linear Multivariable Control: A Geometric Approach, 2nd edn., Springer-Verlag, New York (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karcanias, N., Kalogeropoulos, G. Geometric theory and feedback invariants of generalized linear systems: A matrix pencil approach. Circuits Systems and Signal Process 8, 375–397 (1989). https://doi.org/10.1007/BF01598421

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01598421

Keywords

Navigation