Skip to main content
Log in

Superposition model for zero-field splitting of Fe3+ and Mn2+ ions in garnets

  • Published:
Czechoslovak Journal of Physics B Aims and scope

Conclusions

In view of the results obtained the future of the SM for ZFS seems rather dim. Clearly, no universally valid ¯b2(R) dependence can be constructed. SM is capable to predict the signs and order of magnitudes of ZFS for a and d site S-state ions but here also a large quantitative differences may occur.

On the other hand, we think that the long standing problem of the second order ZFS is now ripe for the solution. The superposability of the covalency and overlap contribution, as well as basically linear dependence of the second order ZFS on the crystal field, are important landmarks in this development. The weakest point seems to be the conception of the crystal field potential arising from the induced multipoles. It is comprehensible that purely electrostatic model can hardly describe the systems with an appreciable covalency, thus a more complete knowledge of the electronic structure is needed. The corresponding ab initio calculation, however demanding, is fully within the reach of the modern methods. Particularly fitted for this purpose seems to be the LCAO-X method, developed by Mintmire and Dunlap [50] in which the one electron potential is directly expanded into the crystal field-like terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Newman D. J., Urban W.: J. Phys. C5 (1972) 3101.

    Google Scholar 

  2. Newman D. J., Urban W.: Adv. Phys.24 (1975) 793.

    Google Scholar 

  3. Vishwamittar, Puri S. P.: J. Chem. Phys.61 (1974) 3720.

    Google Scholar 

  4. Newman D. J.: J. Phys.C 8 (1975) 1863.

    Google Scholar 

  5. Edgar A., Newman D. J.: J. Phys. C8 (1975) 4023.

    Google Scholar 

  6. Misra S. K., Mikolajczak P., Lewis N. R.: Phys. Rev. B24 (1981) 3729.

    Google Scholar 

  7. Lewis N. R., Misra S. K.: Phys. Rev. B26 (1982) 55.

    Google Scholar 

  8. Arakawa M., Aoki H., Takeuchi H., Yosida T., Horri K.: J. Phys. Soc. Jap.57 (1982) 2459.

    Google Scholar 

  9. Newman D. J., Siegel E.: J. Phys. C9 (1976) 4285.

    Google Scholar 

  10. Rubio J. O., Cory W. K.: J. Chem. Phys.69 (1978) 4792.

    Google Scholar 

  11. Murrieta H. S., Rubio J. O., Aguilar G. S.: Phys. Rev. B19 (1979) 5516.

    Google Scholar 

  12. Rubio J. O., Murrieta H. S., Aguilar G. S.: J. Chem. Phys.71 (1979) 4112.

    Google Scholar 

  13. Siegel E., Müller K. A.: Phys. Rev. B19 (1979) 109.

    Google Scholar 

  14. Siegel E., Müller K. A.: Phys. Rev. B20 (1979) 3587.

    Google Scholar 

  15. Sachs H., Lehmann G.: Phys. Status Solidi b92 (1979) 417.

    Google Scholar 

  16. Edgar A., Siegel E., Urban W.: J. Phys. C13 (1980) 6649.

    Google Scholar 

  17. Lehmann G.: Phys. Status Solidi b99 (1980) 623.

    Google Scholar 

  18. Murrieta H. S., López F. J., Rubio J. O., Aguilar G. S.: J. Phys. Soc. Jap.49 (1980) 499.

    Google Scholar 

  19. Heming M., Lehmann G., Henkel G., Krebs B.: Z. Naturforsch. a36 (1981) 286.

    Google Scholar 

  20. Emery J., Leblé A., Fayet J. C.: J. Phys. Chem. Sol.42 (1981) 789.

    Google Scholar 

  21. Brodbeck C. M., Bukrey R. R.: Phys. Rev. B24 (1981) 2334.

    Google Scholar 

  22. Akishige Y., Kubota T., Ohi K.: J. Phys. Soc. Jap.50 (1981) 3964.

    Google Scholar 

  23. Rousseau J. J., Leblé A., Fayet J. G.: J. Phys. (France)39 (1978) 1215.

    Google Scholar 

  24. Buzaré J. Y., Fayet-Bonnel M., Fayet J. C.: J. Phys. C14 (1981) 67.

    Google Scholar 

  25. Novák P., Havlíček V.: Czech. J. Phys. B26 (1976) 687.

    Google Scholar 

  26. Novák P., Veltruský I.: Phys. Status Solidi b73 (1976) 575.

    Google Scholar 

  27. Andriessen J., van Ormondt D.: Report on Bunsenkolloquium, Münster, 1981.

  28. Newman D. J.: to be published.

  29. Newman D. J.: Adv. Phys.20 (1971) 197.

    Google Scholar 

  30. Novák P., Havlíček V., Mill B. V., Sokolov V. I., Shevaleevskii O. I. Solid State Commun.19 (1976) 631.

    Google Scholar 

  31. Geschwind S.: Phys. Rev.121 (1961) 363.

    Google Scholar 

  32. Rimai L., Kushida T.: Phys. Rev.143 (1966) 160.

    Google Scholar 

  33. Hodges J. A., Dormann J. L., Makram H.: Phys. Status Solidi35 (1969) 53.

    Google Scholar 

  34. Hodges J. A.: J. Phys. Chem. Sol.35 (1974) 1385.

    Google Scholar 

  35. Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology. New Series, Vol. 12a, Springer Verlag, Berlin, 1978.

    Google Scholar 

  36. Novak G. A., Gibbs G. V.: Amer Mineral.56 (1971) 791.

    Google Scholar 

  37. Hawthorne F. G.: J. Solid State Chem.37 (1981) 157.

    Google Scholar 

  38. Vosika L.: Thesis. Prague, 1982.

  39. Mill B. V., Belokoneva E. L., Simonov M. A., Belov N. V.: Problemy Krystallologii. Izd. Mosk. Univ., Moscow, 1982, p. 161.

    Google Scholar 

  40. Euler F., Bruce J. A.: Acta Crystallogr.15 (1961) 1268.

    Google Scholar 

  41. Belokoneva E. L., Mill B. V., Simonov M. A., Belov N. V.: Kristallografiya19 (1974) 374.

    Google Scholar 

  42. Renninger G., Mill B. V., Sokolov V. I.: Kristallografiya19 (1974) 361.

    Google Scholar 

  43. Havlicek V., Novák P.: Czech. J. Phys. B27 (1977) 577.

    Google Scholar 

  44. Novák P., Vosika L., Mill B. V.: to be published.

  45. Weenk J. W., Harwig H. A.: J. Phys. Chem. Sol.38 (1977) 1047.

    Google Scholar 

  46. Schmidt P. C., Weiss A., Das T. P.: Phys. Rev. B19 (1979) 5525.

    Google Scholar 

  47. Morrison C. A.: Solid State Commun.18 (1976) 153.

    Google Scholar 

  48. Smit J.: Solid State Commun.6 (1968) 745.

    Google Scholar 

  49. Prandl W.: Z. Kristallogr.123 (1966) 86.

    Google Scholar 

  50. Mintmire J. W., Dunlap B. I.: Phys. Rev. A25 (1982) 88.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors wish to thank Dr. B. V. Mill of Moscow State University (USSR) for supplying the single crystals used in the measurements.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novák, P., Vosika, L. Superposition model for zero-field splitting of Fe3+ and Mn2+ ions in garnets. Czech J Phys 33, 1134–1147 (1983). https://doi.org/10.1007/BF01591256

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01591256

Keywords

Navigation