Skip to main content
Log in

Influence of surfactants on pool boiling of aqueous polyacrylamide solutions

Einfluß von grenzflächenaktiven Stoffen auf das Sieden von Polyacrylamid-Lösungen

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

The influence of a surfactant, sodium lauryl sulfate (SLS), on the pool boiling behavior of aqueous polyacrylamide solutions has been investigated. The basic test section is a heated horizontal platinum wire submerged in a saturated pool of liquid at atmospheric pressure. Results are reported for six combinations of deionized water, polyacrylamide and surfactant. Measurements of surface tension and steady shear apparent viscosity are reported for each working solution.

The boiling heat transfer performance of deionized water containing concentrations of 250 and 1000 (parts per million by weight) wppm of the surfactant did not differ significantly from the values found for deionized water. For the 250 wppm aqueous polyacrylamide solution the boiling performance is poorer than that found for water alone. However, the addition of 250 wppm of SLS to the aqueous polyacrylamide solution resulted in a significant improvement in the boiling heat transfer performance compared to water. An increase in the surfactant concentration to 1000 wppm to the aqueous polymer solution revealed even greater improvement in the boiling performance. At a heat flux of 50 W/cm2, increases in the heat transfer coefficient were as much as 50% for the 250 wppm AP-30 — 250 wppm SLS solution and 100% the for 250 wppm AP-30 — 1000 wppm SLS solution as compared to deionized water alone.

On the basis of these results, it appears that the influence of surfactants on the boiling heat transfer performance of aqueous polymer solutions may be more significant than in the case where surfactants are added to Newtonian fluids.

Zusammenfassung

Es wurde der Einfluß des grenzflächenaktiven Stoffes Sodium-Lauryl-Sulfat (SLS) auf das Verhalten des freien Behältersiedens von Polyacrylamid-Lösungen untersucht. Die Testeinheit besteht aus einem beheizten Platindraht, der in einem mit Flüssigkeit (Umgebungsdruck) gefüllten Behälter eingetaucht ist. Ergebnisse wurden für sechs Kombinationen von vollentsalztem Wasser, Polyacrylamid-Lösungen und grenzflächenaktiven Stoffen untersucht. Messungen der Oberflächenspannung und Viskosität wurden für jedes Gemisch durchgeführt.

Der Wärmetransport beim Sieden von vollentsalztem Wasser mit einem Anteil an SLS von 250 bis 1000 wppm (parts per million by weight) unterscheidet sich nicht von dem bei reinem, vollentsalztem Wasser. Bei einer Lösung mit 250 wppm Polyacryl ist das Sieden schwächer als bei reinem Wasser. Bei einer Zugabe von 250 wppm SLS zur Polyacryl-Lösung ist eine signifikante Zunahme des Wärmetransportes beim Sieden festzustellen. Ein Erhöhen der SLS-Konzentration auf 1000 wppm verstärkt nochmals diese Zunahme. Bei einem Wärmefluß von 50 W/cm2 erhöht sich der Wärmetransportkoeffizient bei der AP-30 — 250 wppm SLS Lösung um 50% und bei der AP-30 — 1000 wppm SLS Lösung um 100% im Vergleich zum vollentsalzten Wasser.

Mit diesen Ergebnissen wird deutlich, daß der Einfluß von grenzflächenaktiven Stoffen auf den Wärmetransport beim Sieden von polymeren Lösungen signifikanter als im Falle von Newtonschen Fluiden ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

q″ :

heat flux, (W/cm2)

T :

fluid temperature, (°C)

T sat :

saturation temperature of the fluid, (°C)

T w :

surface wall temperature, (°C)

ΔT :

=T wT sat, (°C)

η :

steady shear apparent viscosity, (poise)

\(\dot \gamma\) :

shear rate, (sec−1)

σ :

surface tension, (dyne/cm)

References

  1. Rohsenow, M. W.: A method of correlating heat transfer data for surface boiling of liquids. Trans. ASME 74 (1952) 969–975

    Google Scholar 

  2. Forster, H. K.; Zuber, N.: Dynamics of vapor bubbles and boiling heat transfer. AIChE J. 1 (1955) 531–535

    Google Scholar 

  3. Forster, H. K.; Greif, R.: Heat transfer to boiling liquid-mechanisms and correlation. J. Heat Transfer 81 (1959) 43–53

    Google Scholar 

  4. Kutateladze, S. S.; Fundamentals of heat transfer. London: Edward Arnold 1963

    Google Scholar 

  5. Nishikawa, K.; Fujita, Y.: Correlation of nucleate boiling heat transfer based on bubble population density. Int. J. Heat Mass Transfer 20 (1977) 233–245

    Google Scholar 

  6. Kotchaphakdee, P.; William, M. C.: Enhancement of nucleate pool boiling with polymer additives. Int. J. Heat Mass Transfer 13 (1970) 835–848

    Google Scholar 

  7. Gannett, H. J.; William, M. C.: Pool boiling in dilute nonaqueous polymer solutions. Int. J. Heat Mass Transfer 14 (1971) 1001–1005

    Google Scholar 

  8. Wagle, A. K.: Boiling heat transfer in viscoelastic fluids. Ph.D. thesis, Univ. of Delaware, Newark 1982

    Google Scholar 

  9. Miaw, C. B.: A study of heat transfer to dilute polymer solutions in nucleate pool boiling. Ph.D. thesis, Univ. of Michigan, Ann Arbor 1978

    Google Scholar 

  10. Papaioannou, A. T.; Koumoutsos, N. G.: The effects of polymer additives on nucleate boiling. Proc. 7th Int. Heat Transfer Conf. 4, 67–72. Munich, FRG 1982

  11. Yang, Y. M.; Maa, J. R.: Effects of polymers additives on pool boiling phenomena. Let. Heat Mass Transfer 9 (1982) 237–244

    Google Scholar 

  12. Wei, H.; Maa, J. R.: Enhancement of flow boiling heat transfer with polymer additives. Int. J. Heat Mass Transfer 25 (1982) 431–434

    Google Scholar 

  13. Ulicny, J. C.: Nucleate pool boiling in dilute polymer solutions. Ph.D. thesis, Univ. of Michigan, Ann Arbor 1984

    Google Scholar 

  14. Paul, D. D.: Nucleate boiling in drag-reducing polymer solutions. In: The Influence of Polymer Additives (ed. Gampert, B.) IUTAM Symp. E 1984, 425–435

  15. Hu, R. Y. Z.: Nucleate pool boiling from a horizontal wire in viscoelastic fluids. Ph.D. thesis, Univ. of Illinois at Chicago, Chicago 1989

    Google Scholar 

  16. Morgan, A. I.; Bromley, L. A.; Wilke, C. R.: Effect of surface tension on heat transfer in boiling. Ind. Engng. Chem. 41 (1949) 2767–2769

    Google Scholar 

  17. Jontz, P. D.; Myers, J. E.: The effect of dynamic surface tension on nucleate boiling coefficients. AIChE. J. 6 (1960) 34–38

    Google Scholar 

  18. Roll, J. B.; Myers, J. E.: The effect of surface tension on factors in boiling heat transfer. AIChE J. 10 (1964) 530–534

    Google Scholar 

  19. Frost, W.; Kippenhan, C. J.: Bubble growth and heat-transfer mechanisms in the forced convection boiling of water containing a surface active agent. Int. J. Heat Mass Transfer 10 (1967) 939–949

    Google Scholar 

  20. Shah, B. H.; Darby, R.: The effect of surfactant on evaporative heat transfer in vertical film flow. Int. J. Heat Mass Transfer 16 (1973) 1889–1903

    Google Scholar 

  21. Shibayama, S.; Katseta, M.; Suzuki, K.; Kurose, T.; Hatano, Y.: A study on boiling heat transfer in thin liquid film, Heat transfer. Jap. Res. 8 (1979) 12–40

    Google Scholar 

  22. Yang, Y. M.; Maa, J. R.: Pool boiling of dilute surfactant solutions. J. Heat Transfer 105 (1983) 190–192

    Google Scholar 

  23. Tzan, Y. L.; Yang, Y. M.: Experimental study of surfactant effects on pool boiling heat. J. Heat Transfer 112 (1990) 207–212

    Google Scholar 

  24. Lee, Y. L.; Maa, J. R.: The effects of surface diffusion on growth of thin film. Int. Comm. Heat Mass Transfer 18 (1991) 479–494

    Google Scholar 

  25. Chou, C. C.; Yang, Y. M.: Surfactant effects on the temperature profile within the superheated boundary layer and the mechanisms of nucleate pool boiling. J. Chin. I. Ch. E. 22 (1991) 71–80

    Google Scholar 

  26. Lowery, A. J. Jr.; Westwater, J. W.: Heat transfer to boiling methanol — effect of added agents. Ind. Engng. Chem. 49 (1957) 1445–1448

    Google Scholar 

  27. Hu, R. Y. Z.; Wang, A. T. A.; Hartnett, J. P.: Surface tension measurement of aqueous polymer solutions. Experimental Thermal and Fluid Science 4 (1991) 723–729

    Google Scholar 

  28. SensaDyne 6000 Surface Tensiometer Operator Manual. CSC Scientific Company, Fairfax, Va 1988

  29. Rheometrics Fluids Spectrometer Model 8400 Operator Manual. Rheometers, Piscataway, NJ 1986

  30. The Brookfield Digital Viscometer Model DV-II Operating Instructions, Manual No. M/85-160-C. Brookfield Engineering Laboratories, Stoughton, MA. 1985

  31. Yoo, S. S.: Heat transfer and friction factor for non-Newtonian fluids in turbulent pipe flow. Ph.D. thesis, Univ. of Illinois at Chicago, Chicago 1974

    Google Scholar 

  32. Weast, R. C.: CRC Handbook of Chemistry and Physios, 70th ed. Boca Raton, Fla.: CRC 1989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr.-Ing. U. Grigull's 80th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, A.T.A., Hartnett, J.P. Influence of surfactants on pool boiling of aqueous polyacrylamide solutions. Wärme- und Stoffübertragung 27, 245–248 (1992). https://doi.org/10.1007/BF01589922

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01589922

Keywords

Navigation