Skip to main content
Log in

Utilization of glucose and amino acids byBacteroides intermedius andBacteroides gingivalis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Growth ofBacteroides intermedius was promoted only moderately by glucose, and the incorporation of14C-glucose into cells was limited. WithBacteroides gingivalis growth promotion was negligible and glucose incorporation even more restricted. Both species grew prolifically on protein hydrolysates containing peptides, but grew poorly on acid-hydrolyzed casein even when supplemented with amino acids. These results are discussed in relation to the ecological distribution of these species compared to saccharolytic bacteroides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Atfield GN, Morris CJOR (1961) Analytical separations by high voltage electrophoresis: amino acids in protein hydrolysates. Biochem J 81:606–614

    Google Scholar 

  2. Bryant MP, Robinson IM (1962) Some nutritional characteristics of predominant culturable ruminal bacteria. J Bacteriol 84:605–614

    Google Scholar 

  3. Carlsson, J (1973) Simplified gas chromatographic procedure for identification of bacterial metabolic products. Appl Microbiol 25:287–289

    Google Scholar 

  4. Cato EP, Kelley RW, Moore WEC, Holdeman LV (1982)Bacteroides zoogleoformans (Weinberg, Nativelle, and Prevot, 1937) corrig comb nov: emended description. Int J Syst Bacteriol 32:271–274

    Google Scholar 

  5. Coykendall AL, Kaczmarek FS, Slots J (1980) Genetic heterogeneity inBacteroides asaccharolyticus (Holdeman and Moore 1970) Finegold and Barnes 1977 (approved lists, 1980) and proposal ofBacteroides gingivalis sp. nov. andBacteroides macacae (Slots and Genco) comb. nov. Int J Syst Bacteriol 30:559–564

    Google Scholar 

  6. Fawcett JK, Scott JE (1960) A rapid and precise method for the determination of urea. J Clin Pathol 13:156–159

    Google Scholar 

  7. Haapasalo M, Ranta H, Shah HN, Ranta K, Lounatmaa K, Kroppenstedt RM (1986) Biochemical and structural characterization of an unusual group of Gram-negative, anaerobic rods from human periapical osteitis. J Gen Microbiol 132:417–426

    Google Scholar 

  8. Halliwell G, Bryant MP (1963) Cellulolytic activity of pure strains of bacteria from the rumen of cattle. J Gen Microbiol 32:441–448

    Google Scholar 

  9. Hardie JM, Thomson PL, South RJ, Marsh PD, Bowden GH, McKee AS, Fillery ED, Slack GL (1977) A longitudinal epidemiological study on dental plaque and the development of dental caries-interim results after two years. J Dent Res 56:90–98

    Google Scholar 

  10. Holbrook WP, McMillan C (1977) The hydrolysis of dextran by Gram-negative, non-sporing anaerobic bacilli. J Appl Bacteriol 43:369–374

    Google Scholar 

  11. Holdeman LV, Kelley RW, Moore WEC (1984) Family 1 Bacteroidaceae, Pribram 1933. In: Krieg NR and Holt JC (eds) Bergey's manual of determinative bacteriology, 9th edn. Baltimore: Williams and Wilkins, pp 602–662

    Google Scholar 

  12. Kilian M (1981) Degradation of immunoglobulins, A1, A2, and G by suspected principal periodontal pathogens. Infect Immun 34:757–765

    Google Scholar 

  13. Kilian M, Thomsen B, Petersen TE, Bleeg HS (1983) Occurrence and nature of bacterial IgA proteases. Ann Acad Sci 409:612–624

    Google Scholar 

  14. Laughan BE, Syed SA, Loesche WJ (1982) API ZIM system for identification ofBacteroides spp.,Capnocytophaga spp., and spirochetetes of oral origin. J Clin Microbiol 15:97–102

    Google Scholar 

  15. Lev M (1968) Vitamin K deficiency inFusiformis nigrescens: influence on whole cells and cell envelope characteristics. J Bacteriol 95:2317–2324

    Google Scholar 

  16. Lev M (1977) Casamino acids enhance growth ofBacteroides melaninogenicus. J Bacteriol 129:562–563

    Google Scholar 

  17. Mayrand D, McBride BC, Edwards T, Jensen S (1982) Characterization ofBacteroides asaccharolyticus andB. melaninogenicus oral isolates. Can J Microbiol 26:117–118

    Google Scholar 

  18. McWethy SJ, Hartman PA (1977) Purification and some properties of an extracellular alpha-amylase fromBacteroides amylophilus. J Bacteriol 129:1537–1544

    Google Scholar 

  19. Miles DO, Dyer JK, Wong JC (1976) Influence of amino acids on the growth ofBacteroides melaninogenicus. J Bacteriol 127:899–903

    Google Scholar 

  20. Payne J, Gilvarg C (1978) Transport of peptides in bacteria, In: Rosen BP (ed), Bacterial transport. New York: Marcel Dekker, pp 325–383

    Google Scholar 

  21. Pittman KA, Lakshnianan S, Bryant MP (1967) Oligopeptide uptake byBacteroides ruminicola. J Bacteriol 93:1499–1508

    Google Scholar 

  22. Rizza V, Sinclair PR, White DC, Cuorant PR (1968) Electron transport system of the protoheme-requiring anaerobeBacteroides melaninogenicus. J Bacteriol 96:665–671

    Google Scholar 

  23. Roberts RB, Cowie DB, Anderson PH, Bolton ET, Britten RJ (1955) Studies on biosynthesis inEscherichia coli (Carnegie Institution Publication 607) Washington DC: Carnegie Institution

    Google Scholar 

  24. Sawyer SJ, Macdonald JB, Gibbons RJ (1962) Biochemical characteristics ofBacteroides melaninogenicus. Arch Oral Biol 7:685–691

    Google Scholar 

  25. Seddon SV, Shah HN, Hardie JM, Robinson JP (1986) Studies on the trypsin-like protease produced byBacteroides gingivalis. J Dent Res (in press)

  26. Shah HN, Collins MD (1980) Fatty acid and isoprenoid quinone composition in the classification ofBacteroides melaninogenicus and related taxa. J Appl Bacteriol 48:75–87

    Google Scholar 

  27. Shah HN, Williams RAD (1981) Metabolic studies onB. asaccharolyticus andB. melaninogenicus subspintermedius. J Dent Res 60:(B)1161

    Google Scholar 

  28. Shah HN, Williams RAD (1982) Dehydrogenase patterns in the taxonomy ofBacteroides. J Gen Microbiol 128:2955–2965

    Google Scholar 

  29. Shah HN, Williams RAD, Bowden GH, Hardie JM (1976) Comparison of the biochemical properties ofBacteroides melaninogenicus from human dental plaque and other sites. J Appl Bacteriol 41:473–492

    Google Scholar 

  30. Shah HN, Nash RA, Hardie JM, Wheetman, DA, Geddes DA, MacFarlane TW (1985) Detection of acidic end products of metabolism of anaerobic, Gram-negative bacteria. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. London: Academic Press, pp 317–340

    Google Scholar 

  31. Slots J (1979) Subgingival miroflora and periodontal disease. J Clin Periodontol 6:351–382

    Google Scholar 

  32. Slots J (1981) Enzymatic characterization of some oral and nonoral Gram-negative bacteria with the API-ZYM system. J Clin Microbiol 14:288–294

    Google Scholar 

  33. Slots J (1982) Importance of black pigmentedBacteroides in periodontal disease. In: Genco RJ, Mergenhagen SE (eds) Host-parasite interactions in periodontal diseases. Washington DC: Am Soc Microbiol, pp 22–45

    Google Scholar 

  34. Slots J, Genco RJ (1984) Microbial pathogenicity: black pigmentedBacteroides species,Capnocytophaga species, andActinobacillus actinomycetemcomitans in human periodontal disease: virulence factors in colonization, survival, and tissue destruction. J Dent Res 63:412–421

    Google Scholar 

  35. Staat RH, Schachtele CF (1976) Analysis of the dextranase activity produced by an oral strain ofBacteroides ochraceus. J Dent Res 55:1103–1110

    Google Scholar 

  36. Swindlehurst CA, Shah HN, Parr CW, Williams RAD (1977) Sodium dodecyl sulphate-polyacrylamide gel electrophoresis of polypeptides fromBacteroides melaninogenicus. J Appl Bacteriol 43:319–324

    Google Scholar 

  37. Tanner ACR, Listgarten MA, Ebersole JL (1984)Wolinella curva sp nov “Vibrio succinogenes” of human origin. Int J Syst Bacteriol 34:275–282

    Google Scholar 

  38. van Palenstein Helderman WH (1981) Longitudinal microbial changes in developing human supragingival and subgingivial dental plaque. Arch Oral Biol 26:7–12

    Google Scholar 

  39. van Steenbergen TJM, van Winkelhoff AJ, Mayrand D, Grenier D, de Graaf J (1984)Bacteroides endodontalis sp nov, an asaccharolytic black-pigmented bacteroides species from infected dental root canals. Int J Syst Bacteriol 34:118–120

    Google Scholar 

  40. Varel VH, Bryant MP (1974) Nutritional features ofBacteroides fragilis subspfragilis. Appl Microbiol 18:251–257

    Google Scholar 

  41. Wahren A, Gibbons RJ (1970) Amino acid fermentation byBacteroides melaninogenicus. Antonie Van Leeuwenhoek 36:149–159

    Google Scholar 

  42. Wong JC, Dyer JK, Tribble TL (1977) Fermentation ofl-aspartate by a saccharolytic strain ofBacteroides melaninogenicus. Environ Microbiol 33:69–73

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, H.N., Williams, R.A.D. Utilization of glucose and amino acids byBacteroides intermedius andBacteroides gingivalis . Current Microbiology 15, 241–246 (1987). https://doi.org/10.1007/BF01589374

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01589374

Keywords

Navigation