Skip to main content
Log in

Extracellular mannanases and galactanases from selected fungi

  • Original Papers
  • Published:
Journal of Industrial Microbiology

Summary

Eight thermophilic fungi were tested for production of mannanases and galactanases. Highest mannanase activities were produced byTalaromyces byssochlamydoides andTalaromyces emersonii. Mannanases from all strains tested were induced by locust bean gum except in the case ofThermoascus aurantiacus, where mannose had a greater inducing effect. Locust bean gum was also the best inducer of β-mannosidase and galactanase except in the case ofT. emersonii where galactose was a better inducer of both these enzymes. Highest mannanase activity was produced byTalaromyces species when peptone was used as nitrogen source whereas sodium nitrate promoted maximum production of this enzyme byThielavia terrestris andT. aurantiacus. The pH optima of mannanases from the thermophilic fungi were in the range 5.0–6.6 and contrasted with the low pH optimum (3.2) of the enzyme fromAspergillus niger. Galactanases had pH optima in the range 4.3–5.8. The mannanase fromT. emersonii and the galactanase fromT. terrestris were most thermostable, each retaining 100% activity for 3 h at 60°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araki, T. and M. Kitamikado. 1981. β-Mannanase of bacteria isolated from natural habitats. Bull. Jap. Soc. Sci. Fisheries. 47: 753–760.

    Google Scholar 

  2. Araujo, A. and J. D'Souza. 1980. Production of biomass from enzymatic hydrolysate of agricultural waste. J. Ferment. Technol. 58: 399–401.

    Google Scholar 

  3. Araujo, A. and O.P. Ward. 1990. Hemicellulases ofBacillus species: Preliminary comparative studies on production and properties of mannanases and galactanases. J. Appl. Bacteriol. 68: 253–261.

    Google Scholar 

  4. Bailey, P.J., W. Liese, R. Roesch, G. Keilich and E.G. Afting. 1969. Cellulase (β-1,4-glucan 4-glucanohydrolase) from the wood=degrading fungus,Polyporus schweinitzii. Fr. Biochim. Biophys. Acta 185: 381–391.

    Google Scholar 

  5. Bouquelet, S., G. Spik and J. Montreuil. 1978. Properties of a β-d-mannosidase ofAspergillus niger. Biochim. Biophys. Acta 522: 521–530.

    Google Scholar 

  6. Brock, T.D. (ed.). 1986. Introduction, an Overview of the Thermophiles, General Molecular and Applied Microbiology, pp. 1–16, John Wiley and Sons, New York.

    Google Scholar 

  7. Civas, A., R. Eberhard, P. Le Dizet and F. Petek. 1984. Glucosidases induced inAspergillus tamarii: α-d-galactosidase and β-d-mannanase. Biochem. J. 219 (3): 857.

    Google Scholar 

  8. Coughlan, M.P., 1985. The properties of fungal and bacterial cellulases with comment on their production and application. In: Biotechnology and Genetic Engineering Reviews Vol. 3 (Russel, G.E., ed.), pp. 39–109, Intercept, Newcastle.

    Google Scholar 

  9. Dekker, R.F.H.. 1985. Biodegradation of the hemicelluloses. In: Biosynthesis and Biodegradation of Wood components (Higuchi, T., ed.), pp. 505–533, A.P. Inc., Orlando, Florida.

    Google Scholar 

  10. Dekker, R.F.H. and G.N. Richards. 1976. Hemicellulases: their occurrence, purification, properties and mode of action. Adv. Carbohyd. Chem. 32: 277–352.

    Google Scholar 

  11. Durand, H., P. Soucaille and G. Tiraby. 1984. Comparative study of cellulsase and hemicellulases from four fungi: mesophilesTrichoderma reesei andPenicillium sp. and thermophilesThielavia terrestris andSporotrichum cellulophilum. Enzyme Microb. Technol. 6: 175–180.

    Google Scholar 

  12. Elbein, A.D., S. Adya and Y. Chuan Lee. 1977. Purification and properties of a β-mannosidase fromA. niger. J. Biol. Chem. 252: 2026–2031.

    Google Scholar 

  13. Emi, S., J. Fukumoto and T. Yamamoto. 1972. Crystallization and some properties of mannanase. Agric Biol. Chem. 36: 991–1001.

    Google Scholar 

  14. Emi, S. and T. Yamamoto. 1972. Purification and properties of several galactanases ofBacillus subtilis varamylosacchariticus. Agric. Biol. Chem. 36: 1945–1954.

    Google Scholar 

  15. Erickson, K.-E. and W. Rzedowski. 1969. Extracellular enzyme system utilized by the fungusChrysosporium lignorum for breakdown of cellulose. 1. Studies on the enzyme production. Arch. Biochem. Biophys. 129: 683–688.

    Google Scholar 

  16. Fincher, G.B. and B.A. Stone. 1981. Metabolism of noncellulosic polysaccharides. In: Encyclopedia of Plant Physiology, New Series, Vol. 13 (Tanner, W. and F.A. Loewus, eds.), pp. 69–132, Springer-Verlag, Berlin.

    Google Scholar 

  17. Godfrey, T. 1983. Edible oils. In: Industrial Enzymology (Godfrey, T. and J. Reichelt, eds.), pp. 424–427, Nature Press, New York.

    Google Scholar 

  18. Halmer, P., J.D. Bewley and T.A. Thorpe. 1975. An enzyme to degrade the lettuce endosperm cell wall during gibberellin and light-induced germination. Nature 258: 716–718.

    Google Scholar 

  19. Hashimoto, Y. and J. Fukumoto. 1969. Studies on the enzyme treatment of coffee beans. Purification of mannanase ofRhizopus niveus and its action on coffee mannan. Nippon Nogei Kagaku Kaishi. 43: 317–322.

    Google Scholar 

  20. Ishihara, M. and K. Shimuzu. 1980. Hemicellulases of brown rotting fungus,Tyromyces palustris Purification and some properties of an extracellular mannanase. Mokuzai Gakkaishi. 26: 811–818.

    Google Scholar 

  21. Johnson, E.A., M. Sakajah, G. Halliwell, G. Media and A.L. Demain. 1982. Saccharification of complex cellulosic substrates by the cellulase system fromClostridium thermocellum. Appl. Environ. Microbiol. 43: 1125–1132.

    Google Scholar 

  22. Karimi, S. and O.P. Ward. 1989. Comparative study of some microbial arabinan degrading enzymes. J. Indust., Microbiol. 4: 173–180.

    Google Scholar 

  23. Knee, M. and J. Friend. 1970. Some properties of the galactanase secreted byPhytophthora infestans. J. Gen. Microbiol. 60: 23–30.

    Google Scholar 

  24. Maloney, A.P., S.I. McCrae, T.M. Wood and M.P. Coughlan. 1985. Isolation and characterization of the 1,4-d-glucan glucanohydrolases ofTalaromyces emersonii. Biochem. J. 2250: 365–374.

    Google Scholar 

  25. McCleary, B.V. 1988. β-d-Mannosidase fromHelix pomatia. In: Methods in Enzymology Vol. 160 (Wood, W.A. and S.T. Kellogg, eds.), pp. 614–619, Academic Press, San Diego.

    Google Scholar 

  26. McCleary, B.V. and N.K. Matheson. 1974. Galactomannan structure and β-mannanase and β-mannosidase activity in germinating legume seeds. Phytochemistry 14: 1187–1194.

    Google Scholar 

  27. McHale, A. and M.P. Coughlan. 1981. The cellulotytic system ofTalaromyces emersonii. Purification and characterization of the extracellular and intracellular glucosidases. Biochim. Biophys. Acta 662: 152–159.

    Google Scholar 

  28. McHale, A. and M.P. Coughlan. 1982. Properties of the β-glucosidases ofTalaromyces emersonii. J. Gen. Microbiol. 128: 2327–2331.

    Google Scholar 

  29. Meier, H. and J.S.G. Reid. 1981. Reserve polysaccharides other than starch in higher plants. In: Encyclopedia of Plant Physiology, New Series, 13A (Pirson A. and M.H. Zimmermann, eds.), pp. 418–471, Springer-Verlag, Berlin.

    Google Scholar 

  30. Miller, G.L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428.

    Google Scholar 

  31. Ratto, M. and K. Poutanen. 1988. Production of mannan-degrading enzymes. Biotechnol. Lett. 10: 661–664.

    Google Scholar 

  32. Reese, E.T. and Y. Shibata. 1965. β-Mannanases of fungi. Can. J. Microbiol. 11: 167–193.

    Google Scholar 

  33. Sone, Y. and A. Misaki. 1978. Purification and characterization of β-d-mannosidase and β-N-acetyl-d-hexosaminidase ofTremella fusiformis. J. Biochem. (Tokyo) 83: 1135–1144.

    Google Scholar 

  34. Tong, C.C., A.L. Cole and M.G. Shepherd. 1980. Purification and properties of the cellulases fromThermomascus aurantiacus. Biochem. J. 191: 83–94.

    Google Scholar 

  35. Tsujisaki, Y., K. Hujama, S. Takenishi and J. Fukumoto. 1972. Studies on the hemicellulases: III. Purification and some properties of mannanases fromAspergillus niger van Tieghem sp. Nippon Nogei Kagaku Kaishi 46: 155–161.

    Google Scholar 

  36. Urbanek, H. and J. Zalewska-Sobczak. 1986. 1.4-β-Galactanases and 1.3-β-glucanases ofBotrytis cinerea isolate infecting apple. Biochem. Physiol. Pflanzen 181: 321–329.

    Google Scholar 

  37. van Etten, H.D., and D.F. Bateman. 1969. Enzymatic degradation of galactan, galactomannan and xylan bySclerotium rolfsii. Phytopathology 59: 968–972.

    Google Scholar 

  38. Wan, C.C., J.E. Muldrey, S.C. Li and Y.-T. Li 1976. β-Mannosidase is also produced by the mushroomPolyporus sulfureus. J. Biol. Chem. 251: 4384–4388.

    Google Scholar 

  39. Ward, O.P. and M. Moo-Young. 1988. Thermostable enzymes. Biotechnol. Adv. 6: 39–69.

    Google Scholar 

  40. Ward, O.P. and M. Moo-Young. 1989. Enzymatic degradation of cell wall and related plant polysaccharides. Crit. Rev. Biotechnol. 8: 237–274.

    Google Scholar 

  41. Yalpani, M. 1988. Polysaccharides. In: Studies in Organic Chemistry 36, pp. 1–479, Eslevier, Amsterdam.

    Google Scholar 

  42. Yoshioka, H., S. Chavanish, N. Nilubol, S. Hayashida. 1981. Production and characterization of thermostable xylanase fromTalaromyces byssochalamydoides YH-50. Agric. Biol. Chem. 45: 579–586.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araujo, A., Ward, O.P. Extracellular mannanases and galactanases from selected fungi. Journal of Industrial Microbiology 6, 171–178 (1990). https://doi.org/10.1007/BF01577692

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01577692

Key words

Navigation