Skip to main content
Log in

Autotrophic growth of strains ofRhizobium and properties of isolated hydrogenase

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Four strains ofRhizobium (R. trifolii RCL10,R. japonicum S19 and SB16, andRhizobium sp. NEA4) were demonstrated to grow lithoautotrophically with molecular hydrogen as sole electron donor and with ammonium or with N2 as N source. All of them showed ribulose-1,5-bisphosphate carboxylase activity and hydrogenase (H2-uptake) activity with methylene blue and oxygen as electron acceptors. ForR. japonicum SB 16, a doubling time under autotrophic conditions of 30 h and a specific hydrogenase activity (methylene blue reduction) in crude extracts of 1.4 U/mg protein were calculated.Rhizobium hydrogenase is a membrane-bound enzyme. It is mainly detectable in particulate cell fractions, it cross-reacts with the antibodies of the membrane-bound hydrogenase ofAlcaligenes eutrophus, and is unable to reduce NAD. The isolated hydrogenase is a relatively oxygen-sensitive enzyme with a half-life of three days when stored at 4°C under air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Aggag, M., Schlegel, H. G. 1973. Studies on a Gram-positive hydrogen bacterium,Nocardia opaca strain 1b. Archiv für Mikrobiologie88:299–318.

    Google Scholar 

  2. Arp, D. J., Burris, R. H. 1979. Purification and properties of the particulate hydrogenase from the bacteriods of soybean root nodules. Biochimica et Biophysica Acta570:221–230.

    Google Scholar 

  3. Beisenherz, G., Boltze, H. J., Bücher, Th., Czok, R., Garbade, K. H., Meyer-Arendt, E., Pfleiderer, G. 1953. Diphosphofructose-Aldolase, Phosphoglyceraldehyd-Dehydrogenase, Milchsäure-Dehydrogenase, Glycerophosphat-Dehydrogenase und Pyruvat-Kinase aus Kaninchenmuskulatur in einem Arbeitsgang. Zeitschrift für Naturforschung8b:555–577.

    Google Scholar 

  4. Berndt, H., Ostwal, K.-P., Lalucat, J., Schumann, C., Mayer, F., Schlegel, H. G. 1976. Identification and physiological characterization of the nitrogen fixing bacteriumCoryneformbacterium autotrophicum GZ29. Archives of Microbiology108:17–26.

    Google Scholar 

  5. Bowien, B., Mayer, F., Codd, G. A., Schlegel, H. G. 1976. Purification, some properties and quaternary structure of the D-ribulose 1,5-diphosphate carboxylase ofAlcaligenes eutrophus. Archives of Microbiology110:157–166.

    Google Scholar 

  6. Dixon, R. O. D. 1972. Hydrogenase in legume root nodule bacteroids: occurrence and properties. Archiv für Mikrobiologie85:193–201.

    Google Scholar 

  7. Gogotov, J. N., Schlegel, H. G. 1974. N2-fixation by chemoautotrophic hydrogen bacteria. Archives of Microbiology97:359–362.

    Google Scholar 

  8. Hanus, F. J., Maier, R. J., Evans, H. J. 1979. Autotrophic growth of H2-uptake-positive strains ofRhizobium japonicum in an atmosphere supplied with hydrogen gas. Proceedings of the National Academy of Sciences of the United States of America76:1788–1792.

    Google Scholar 

  9. Lepo, J. E., Hanus, F. J., Evans, H. J. 1980. Chemoautotrophic growth of hydrogen-uptake-positive strains ofRhizobium japonicum. Journal of Bacteriology141:664–670.

    Google Scholar 

  10. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry193:265–275.

    Google Scholar 

  11. Malik, K. A., Schlegel, H. G. 1980. Enrichment and isolation of new nitrogen-fixing hydrogen bacteria. FEMS Microbiology Letters8:101–104.

    Google Scholar 

  12. Malik, K. A., Jung, C., Claus, D., Schlegel, H. G. 1981. Nitrogen fixation by the hydrogen-oxidizing bacteriumAlcaligenes latus. Archives of Microbiology129:254–256.

    Google Scholar 

  13. Malik, K. A., Schlegel, H. G. 1981. Chemolithoautotrophic growth of bacteria able to grow under N2-fixing conditions. FEMS Microbiology Letters11:63–67.

    Google Scholar 

  14. Oakley, C. L. 1971. Antigen-antibody reactions in microbiology, pp. 173–218. In: Norris, J. R., Ribbons, D. W. (eds.), Methods in microbiology, vol. 5A. London: Academic Press.

    Google Scholar 

  15. Pedrosa, F. O., Döbereiner, J., Yates, M. G. 1980. Hydrogen-dependent growth and autotrophic carbon dioxide fixation inDerxia. Journal of General Microbiology119:547–551.

    Google Scholar 

  16. Schink, B., Schlegel, H. G. 1978. Hydrogen metabolism in aerobic hydrogen-oxidizing bacteria. Biochimie60:297–305.

    Google Scholar 

  17. Schneider, K., Schlegel, H. G. 1977. Localization and stability of hydrogenases from aerobic hydrogen bacteria. Archives of Microbiology112:229–238.

    Google Scholar 

  18. Subba Rao, N. S., Tilak, K. V. B. R., Singh, C. S. 1980. Root nodulation studies inAeschynomene aspera. Plant and Soil56:491–494.

    Google Scholar 

  19. Weber, K., Osborn, M. 1969. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. Journal of Biological Chemistry244:4406–4412.

    Google Scholar 

  20. Wiegel, J., Schlegel, H. G. 1976. Enrichment and isolation of nitrogen-fixing hydrogen bacteria. Archives of Microbiology107:139–142.

    Google Scholar 

  21. Wilson, P. W., Umbreit, W. W. 1937. Mechanism of symbiotic nitrogen fixation. III. Hydrogen as a specific inhibitor. Archiv für Mikrobiologie8:440–457.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tilak, K.V.B.R., Schneider, K. & Schlegel, H.G. Autotrophic growth of strains ofRhizobium and properties of isolated hydrogenase. Current Microbiology 10, 49–52 (1984). https://doi.org/10.1007/BF01576047

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01576047

Keywords

Navigation