Skip to main content
Log in

On linear versus nonlinear flow rules in strain localization analysis

  • Published:
Meccanica Aims and scope Submit manuscript

Sommario

Si svolgono alcune considerazioni sui fenomeni di biforcazione in solidi elastoplastici in regime di “piccole deformazioni” (di linearità geometrica) e precisamente sul manifestarsi di localizzazioni intese come discontinuità nel campo delle deformazioni incrementali. Si considerano leggi nonassociate. Vengono così inclusi nella trattazione modelli costitutivi frequentemente adottati per descrivere il comportamento di materiali ad attrito interno e soggetti a danneggiamento (nel senso di degrado di rigidezze elastiche in seguito a deformazioni anelastiche), oltre che soggetti a manifestazioni di instabilità per incrudimento negativo (“softening”). Si esamina criticamente il criterio, frequentemente adottato in letteratura, di localizzazione fondato su “materiale di confronto” incrementalmente lineare e si fornisce, corredato da osservazioni comparative, il criterio che risulta dall'assunzione del modello di materiale incrementale non lineare

Summary

This note contains some remarks on the analysis of bifurcation phenomena, specifically strain localization (onset of a strain rate discontinuity), in small-deformation elastoplasticity. Nonassociative flow rules are allowed for to cover constitutive models frequently adopted for frictional (and softening) materials such as concrete. The conventional derivation of the localization criterion resting on an incrementally linear “comparison material” is critically reviewed and compared to the criterion resulting from “actual” nonlinear plastic flow laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bazant Z.P.,Instability, Ductility and Size Effect in Strain-Softening Concrete, Proc. ASCE, J. Eng. Mech. Vol. 102, 1976, pp. 331–344.

    Google Scholar 

  2. Casey J., Lin H.H.,Subcritical, Critical and Supercritical Direction of Loading in Plasticity, J. de Mec. Theor. et Appl., Vol. 5, N. 5, 1986, pp. 685–701.

    Google Scholar 

  3. Cedolin L., Dei Poli S., Iori I.,Tensile Behaviour of Concrete, Proc. ASCE, J. Eng. Mech., Vol. 113, 1987, pp. 431–449.

    Google Scholar 

  4. Chambon R., Desrues J.,Quelques remarques sur le probleme de la localisation en bandes de cisaillement, Mech. Res. Comm. Vol. 11, 1984, pp. 145–153.

    Google Scholar 

  5. De Borst R.,Computation of Post-Bifurcation and Post-Failure Behavior of Strain-Softening Solids, Computers & Structures, Vol. 25, N. 2, 1987, pp. 211–224.

    Google Scholar 

  6. Hill R., Hutchinson J.W.,Bifurcation Phenomena in the Plane Tensile Test, J. Mech. Phys. Solids, Vol. 23, 1975, pp. 239–264.

    Google Scholar 

  7. Loret B.,Non-linéarité incrémentale et localisation des déformations: quelque remarques, J. de Méc. Théor. Appl., Vol. 6, N. 3, 1987, pp 423–459.

    Google Scholar 

  8. Maier G.,Incremental Plastic Analysis in the Presence of Large Displacements and Physical Instabilizing Effects, Int. J. Solid & Struct., Vol. 7, 1971, pp. 345–372.

    Google Scholar 

  9. Maier G.,A Minimum Principle for Incremental Elastoplasticity with Nonassociated Flow Laws, J. Mech. Phys. Solids, Vol. 18, 1970, pp. 319–330.

    Google Scholar 

  10. Maier G., Hueckel T.,Nonassociated and Coupled Flow Rules in Elastoplasticity for Rock-like Materials, Int. J. Rock. Mech. & Mining Sci., Vol. 16, 1979, pp. 77–92.

    Google Scholar 

  11. Needleman A., Tvergaard V.,On the Finite Element Analysis of Localization in Plasticity, in: J.T. Oden and G.F. Carey, Eds., Finite Elements-Special Problems in Solid Mechanics 5, Prentice-Hall, Englewood Cliffs, N.J., 1983, pp. 94–157.

    Google Scholar 

  12. Ortiz M., Leroy Y., Needleman A.,A Finite Element Method for Localized Failure Analysis, Computer Meth. in Appl. Mech. and Eng., Vol. 61, 1987, pp. 189–214.

    Google Scholar 

  13. Ortiz M.,An Analytical Study of the Localized Failure Modes of Concrete, Mech. Mat. (to appear).

  14. Prevost J.H.,Localization of Deformations in Elastic-Plastic Solids, Internat. J. Numer. Analyt. Meths. Geomech. 8, 1984, pp. 187–196.

    Google Scholar 

  15. Raniecki B., Bruhns O.T.,Bounds to Bifurcation Stresses in Solids with Non-Associated Plastic Flow Laws at Finite Strain, J. Mech. Phys. Solids, Vol. 29, 1981, pp. 153–172.

    Google Scholar 

  16. Rice J.R.,The Localization of Plastic Deformation, in: W.T. Koiter, Ed., Theoretical and Applied Mechanics, North-Holland, 1976, pp. 207–220.

  17. Rice J.R., Rudnicki J.W.,A Note on Some Features of the Theory of Localization of Deformation, Int. J. Solids & Struct., Vol. 16, 1980, pp. 597–605.

    Google Scholar 

  18. Rudnicki J.W., Rice J.R.,Conditions for the Localization of Deformation in Pressure-Sensitive Dilatant Materials, J. Mech. Phys. Solids, Vol. 23, 1975, pp. 371–394.

    Google Scholar 

  19. Tvergaard V., Needleman A., Lo K.K.,Flow Localization in the Plane Strain Tensile Test, J. Mech. Phys. Solids, Vol. 29, 1981, pp. 115–142.

    Google Scholar 

  20. Willam K.J.,Bicanic N.,Store S.,Constitutive and Computational Aspects of Strain-Softening and Localization in Solids, presented at ASME — WAM '84 Symp. on ≪Constitutive Equations: Micro, Macro and Computational Aspects≫, New Orleans, Dec. 1984.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borré, G., Maier, G. On linear versus nonlinear flow rules in strain localization analysis. Meccanica 24, 36–41 (1989). https://doi.org/10.1007/BF01576001

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01576001

Keywords

Navigation