Skip to main content
Log in

The ecology and evolution of bacteriocins

  • Published:
Journal of Industrial Microbiology

Abstract

In this review we focus on the ecological and evolutionary forces that determine the frequency and diversity of colicins inEscherichia coli. To begin, we describe that this killing phenotype is ubiquitous inE. coli, with as many as 50% of the isolates from a population producing colicin toxins, and that each population sampled has its own unique distribution of the more than 20 known colicin types. Next, we explore the dynamics of colicinogeny, which exhibits a typical form of frequency dependence, where the likelihood of successful colicin invasion into a population increases as the initial density of colicinogenic cells increases. We then incorporate thoughts on the evolution of chromosomal resistance to colicins and describe how resistance might influence the dynamics of colicinogen invasion and maintenance and the resulting colicin diversity. The final section deals with a genetic and phylogenetic characterization of colicins and a discussion of the evolutionary mechanisms responsible for generating colicin diversity. In this final section we provide details of the different molecular mechanisms known to play a role in generating colicin diversity, including the two most dominant forces in colincin evolution: recombination and positive, deversifying, selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achtman M, A Mercer, B Kusecek, A Pohl, M Heuzenroeder, W Aaronson, A Sutton and RP Silver. 1983. Six widespread bacterial clones amongEscherichia coli K1 isolates. Infect Immun 39: 315–335.

    PubMed  Google Scholar 

  2. Broda P. 1979. Plasmids. Freeman, San Francisco.

    Google Scholar 

  3. Campbell A. 1981. Evolutionary significance of accessory DNA elements in bacteria. Ann Rev Microbiol 35: 55–83.

    Google Scholar 

  4. Caugant DA, BR Levin and RK Selander. 1984. Genetic diversity and temporal variation in theE. coli population of a human host. Genetics 98: 467–490.

    Google Scholar 

  5. Chan PT, H Ohmori, J Tomizawa and J Lebowitz. 1985. Nucleotide sequence and gene organization of Col E1 DNA. J Biol Chem 260: 8925–8935.

    PubMed  Google Scholar 

  6. Chao L and BR Levin. 1981. Structured habitats and the evolution of anticompetitor toxins in bacteria. Proc Natl Acad Sci (USA) 78: 6324–6328.

    Google Scholar 

  7. Cooke M, GT Hettiaratchy and AC Buck. 1972. The fate of ingestedEscherichia coli in normal persons. J Med Micro 5: 361–369.

    Google Scholar 

  8. Craven JA and DA Barnum. 1971. Distribution of porcine fecal coliflora throughout a barn. Can J Comp Med 35: 274–278.

    PubMed  Google Scholar 

  9. De Lorenzo V and A Aquilar. 1984. Antibiotics for Gram-negative bacteria: do they play a role in microbial ecology? Trends Biochem Sci 9: 266–269.

    Google Scholar 

  10. De Vuyst L and E Vandamme. 1994. Bacteriocins of Lactic Acid Bacteria. Blackie Academic and Professional, London.

    Google Scholar 

  11. Di Masi DR, JC White, CA Schnaitman and C Bradbeer. 1973. Transport of vitamin B12 inEscherichia coli: common receptor sites for vitamin B12 and the E colicins on the outer membrane of the cell envelope. J Bacteriol 115: 506–513.

    PubMed  Google Scholar 

  12. Florey H. 1946. The use of microorganisms for therapeutic purposes. Yale Medical School Publication.

  13. Frank SA. 1994. Spatial polymorphism of bacteriocins and other allelopathic traits. Evol Ecol. 8: 369–386.

    Google Scholar 

  14. Govan J. 1986.In vivo significance of bacteriocins and bacteriocin receptors. Scand J Infec Dis 44: 31–37.

    Google Scholar 

  15. Hardy K. 1974. Colicinogeny and related phenomena. Bacteriol Rev. 39: 464–515.

    Google Scholar 

  16. Hill C and IB Holland. 1967. Genetic basis of colicin E susceptibility inEscherichia coli. I. Isolation and properties of refractory mutants and preliminary mapping of their mutations. J Bacteriol 94: 677–686.

    PubMed  Google Scholar 

  17. Hughes A and M Nei. 1988. Pattern of nucleotide substitution at major histocompatibility complex class I loci reveal overdominant selection. Nature 335: 167–170.

    PubMed  Google Scholar 

  18. Hughes A and M Nei. 1989. Nucleotide substitutions at class II MHC loci: evidence for overdominant selection Proc Natl Acad Sci (USA) 86: 958–962.

    Google Scholar 

  19. James R, C Lazdunski and F Pattus. 1991. Bacteriocins, Microcins and Lantibiotics. Nato ASI Series. Springer-Verlag, New York. 519 pp.

    Google Scholar 

  20. Konisky J. 1982. Colicins and other bacteriocins with established modes of action. Ann Rev Microbiol 36: 125–144.

    Google Scholar 

  21. Lau PCK, M Parsons and T Uchimura. 1992. Molecular evolution of E colicin plasmids with emphasis on the endonuclease types. In: Bacteriocins, Microcins and Lantibiotics (James R, C Lazdunski and F Pattus, eds), pp 353–378, Springer-Verlag, Berlin.

    Google Scholar 

  22. Lazdunski C and D Cavard. 1982. Colicins: a mini review. Toxicon 20: 223–228.

    PubMed  Google Scholar 

  23. Lenski RE. 1988. Experimental studies of pleiotropy and epistasis inEscherichia coli. I. Variation is competitive fitness among mutants resistant to virus T4. Evol 42: 425–432.

    Google Scholar 

  24. Levin BR. 1988. Frequency-dependent selection in bacterial populations. Phil Trans Roy Soc Lond B 319: 459–472.

    Google Scholar 

  25. Luria SE and JI Suit. 1987. Colicins and col plasmids. In:Escherichia coli andSalmonella typhimurium: Cellular and Molecular Biology. (Neidhardt FC, et al., eds), pp. 1615–1622, American Society for Microbiology, Washington, DC.

    Google Scholar 

  26. Mankovich J, C Hsu and J Konisky. 1986. DNA and amino acid sequence analysis of structural and immunity genes of colicins Ia and Ib. J Bacteriol 168: 228–236.

    PubMed  Google Scholar 

  27. Mock M and AP Pugsley. 1982. ThebtuB group Col plasmids and homology between the colinins they encode. J Bacteriol 150: 1069–1076.

    PubMed  Google Scholar 

  28. Nagel de Zwaig R and SE Luria. 1967. Genetics and physiology of colicin-tolerant mutants ofEscherichia coli. J Bacteriol 94: 1112–1123.

    PubMed  Google Scholar 

  29. Nomura M and C Witten. 1967. Interactions of colicins with bacterial cells. III. Colicin-tolerant mutations inEscherichia coli. J Bacteriol 94:1093–1111.

    PubMed  Google Scholar 

  30. Pugsley AP. 1984. The ins and outs of colicins. Microbiol Sci 1: 168–175, 203–205.

    PubMed  Google Scholar 

  31. Pugsley AP and B Oudega. 1987. Methods of studying colicins and their plasmids. In: Plasmids, a Practical Approach (Hardy KG, ed), pp 105–161, IRL Press, Oxford.

    Google Scholar 

  32. Reanney D. 1976. Extrachromosomal elements as possible agents of adaptation and development. Bacteriol Rev 40: 552–590.

    PubMed  Google Scholar 

  33. Reeves P. 1972. The Bacteriocins. Springer-Verlag, New York.

    Google Scholar 

  34. Riley MA. 1993. Molecular evolution of colicin. Mol Biol Evol 10: 1048–1059.

    PubMed  Google Scholar 

  35. Riley MA, 1993. Positive selection for colicin diversity inEscherichia coli. Mol Biol Evol 10: 1380–1395.

    PubMed  Google Scholar 

  36. Riley MA and DM Gordon 1992. A survey of Col plasmids in natural isolates ofEscherichia coli and an investigation into the stability of Col-plasmid lineages. J Gen Microbiol 138: 1345–1352.

    PubMed  Google Scholar 

  37. Roos U, RE Harkness and V Braun. 1989. Assembly of colicins genes from a few DNA fragments, nucleotide sequence of colicin D. Mol Microbiol 3: 891–902.

    PubMed  Google Scholar 

  38. Schramm E, J Mende, V Braun and R Kamp. 1987. Nucleotide sequence of the colicin B activity gene cba consensus pentapeptide among TonB-dependent colicins and receptors. J Bacteriol 169: 3350–3357.

    PubMed  Google Scholar 

  39. Selander RK, DA Caugant and TS Whittam. 1987. Genetic structure and variation in natural populations ofEscherichia coli. In:Escherichia coli andSalmonella typhimurium: Cellular and Molecular Biology (Neidhardt FC,et al., eds), pp 1615–1622, American Society for Microbiology, Washington, DC.

    Google Scholar 

  40. Strobeck C. 1983. Expected linkage disequilibrium for a neutal locus linked to a chromosomal arrangement. Genetics 103: 545–557.

    PubMed  Google Scholar 

  41. Tadd AD and A Hurst. 1961. The effect of feeding colicinogenicEscherichia coli on the intestinalE. coli of early weaned pigs. J Appl Bacteriol 24: 222–228.

    Google Scholar 

  42. Tagg JR, AS Dajani and LW, Wannamaker. 1976. Bacteriocins of gram positive bacteria. Bacteriol Rev 40: 722–756.

    PubMed  Google Scholar 

  43. Veltkamp E and AR Studtje. 1981. Replication and structure of the bacteriocinogenic plasmids Clo DF13 and Col E1. Plasmid 5: 76–99.

    PubMed  Google Scholar 

  44. Ward RJ, SE Hufton, NA Bunce, AJP Fletcher and RE Glass 1992. A structure-function analysis of BtuB, the vitamin B12 outer membrane transport protein. In: Bacteriocins, Microcins and Lantibiotics (James R, C Lazdunski and F Pattus, eds), pp 353–378, Springer-Verlag, Berlin.

    Google Scholar 

  45. Waters VL and JH Croza. 1991. Colicin V virulence plasmids. Microbiol Rev 55: 437–450.

    PubMed  Google Scholar 

  46. Webster RE and SK Levengood. 1992. TolA: structure, location and role in the uptake of colicins. In: Bacteriocins, Microcins and Lantibiotics (James R, C Lazdunski and F Pattus, eds), pp 353–378, Springer-Verlag, Berlin.

    Google Scholar 

  47. Whittam TS. 1989. Clonal dynamics ofEscherichia coli in its natural habitat. Ant van Leeu 55: 23–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riley, M.A., Gordon, D.M. The ecology and evolution of bacteriocins. Journal of Industrial Microbiology & Biotechnology 17, 151–158 (1996). https://doi.org/10.1007/BF01574688

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01574688

Keywords

Navigation