Skip to main content
Log in

Linear viscoelastic theory and the understanding of orientation, recoverable strain and mechanical properties resulting from thermoplastic processing

  • Published:
Rheologica Acta Aims and scope Submit manuscript

Summary

The concept of recoverable strain is discussed and measured in connection with extrusion, injection molding and uniaxial tensile deformations at constant jaw speed. The data are treated phenomenologically according to the theory of linear viscoelasticity with a subsequent non-linearization. Recoverable strain for the case of extrusion is given in terms of the shear rate and capillary dimensions together with a knowledge of independently determined material parameters. Estimates of the high shear rate values of the equilibrium elastic compliance,J e , are given.

Zusammenfassung

Das Konzept der elastischen Dehnung wird diskutiert, und diesbezügliche Messungen werden in Verbindung mit Extrusion, Spritzgießen und einachsiger Verstreckung bei konstanter Verstreckgeschwindigkeit durchgeführt. Die Ergebnisse werden phänomenologisch diskutiert unter Anwendung der Theorie der linearen Viskoelastizität und nachfolgender Nicht-Linearisierung. Die elastische Dehnung bei der Extrusion wird in Abhängigkeit von der Schergeschwindigkeit und den Kapillardimensionen, sowie von einigen unabhängig bestimmten Materialparametern angegeben. Schätzwerte der GleichgewichtskomplianzJ e für hohe Schergeschwindigkeiten werden mitgeteilt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferry, J. D., Viscoelastic Properties of Polymers, 2nd Edition, p. 249 (New York 1970).

  2. Sips, R. J. Polym. Sci.5, 69 (1950).

    Google Scholar 

  3. Chapoy, L. L. Rheol. Acta8, 497 (1969).

    Google Scholar 

  4. Chapoy, L. L., S. Pedersen, to be published.

  5. Robertson, R. E. J. Chem. Phys.44, 3950 (1966).

    Google Scholar 

  6. Graessley, W. W. J. Chem. Phys.47, 1942 (1967).

    Google Scholar 

  7. Pedersen, S., S. Damjanow, L. L. Chapoy, to be published.

  8. Tobolsky, A. V., L. L. Chapoy J. Polymer Sci.B6, 493 (1968).

    Google Scholar 

  9. Huseby, T. W. Trans. Soc. Rheology10, 181 (1966).

    Google Scholar 

  10. Middleman, S., The Flow of High Polymers, p. 28ff. (New York 1968).

  11. Pearson, K. Tables of the IncompleteΓ Function, His Majesty's Stationery Office (London 1922).

    Google Scholar 

  12. Denson, C. D. Polymer Engineering and Sci.13, 125 (1973).

    Google Scholar 

  13. Stevenson, J. F. AIChE J.18, 540 (1972).

    Google Scholar 

  14. Ferry, J. D., Viscoelastic Properties of Polymers, 2nd Edition, p. 75 (New York 1970).

  15. Ferry, J. D., Viscoelastic Properties of Polymers, 2nd Edition, p. 417 (New York 1970).

  16. Woebcken, W. Kunststoffe51, 547 (1961).

    Google Scholar 

  17. Tanner, R. I. J. Polymer Sci. A-2,8, 2067 (1970).

    Google Scholar 

  18. Graessley, W. W., S. D. Glasscock, R. L. Crowley Trans. Soc. Rheol.14, 519 (1970).

    Google Scholar 

  19. Graessley, W. W. Adv. Polymer Sci.16, 58 (1974).

    Google Scholar 

  20. Vlachopoulos, J., M. Horie, S. Lidokis Trans. Soc. Rheology16, 669 (1972).

    Google Scholar 

  21. Tanner, R. I. Applied Polymer Symposia20, 201 (1973).

    Google Scholar 

  22. Graessley, W. W. Adv. Polymer Sci.16, 25 (1974).

    Google Scholar 

  23. Graessley, W. W. Adv. Polymer Sci.16, 34 (1974).

    Google Scholar 

  24. Einaga, Y., K. Osaki, M. Kurata Polymer J.2, 550 (1971).

    Google Scholar 

  25. Einaga, Y., K. Osaki, M. Kurata, S. Kimura, N. Yamada, M. Tamura Polymer J.5, 91 (1973).

    Google Scholar 

  26. Osaki, K., Y. Einaga, M. Kurata, N. Yamada, M. Tamura Polymer J.5, 283 (1973).

    Google Scholar 

  27. Graessley, W. W. Adv. Polymer Sci.16, 68 (1974).

    Google Scholar 

  28. Graessley, W. W., L. Segal Macromolecules2, 49 (1969).

    Google Scholar 

  29. Plazek, D. J., V. M. O'Rourke J. Polymer Sci. A-2,9, 209 (1971).

    Google Scholar 

  30. Penwell, R. C., W. W. Graessley, A. Kovacs J. Polymer Sci. A-2,12, 1771 (1974).

    Google Scholar 

  31. Abdel, S. I., O. Hassager, R. B. Bird Polymer Engineering and Science14, 859 (1974).

    Google Scholar 

  32. Menges, G., G. Wübken, Berichte zum 6. Kunststofftechnischen Kolloquium des IKV in Aachen, IV-1,21 (1972).

  33. Cox, H. W., C. W. Macosko SPE ANTEC20, 28 (1974).

    Google Scholar 

  34. Chapoy, L. L. Rheol. Acta13, 779 (1974).

    Google Scholar 

  35. Ballman, R. L. Rheol. Acta4, 137 (1965).

    Google Scholar 

  36. Vinogradov, G. V., A. I. Leonov, A. N. Prokunin Rheol. Acta8, 482 (1969).

    Google Scholar 

  37. Cogswell, F. N. Applied Polymer Symposium27, 1 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

In partial fulfilment of the Teknisk Licentiate degree.

With 16 figures and 5 tables

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heron, H., Pedersen, S. & Chapoy, L.L. Linear viscoelastic theory and the understanding of orientation, recoverable strain and mechanical properties resulting from thermoplastic processing. Rheol Acta 15, 379–402 (1976). https://doi.org/10.1007/BF01574494

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01574494

Keywords

Navigation