Skip to main content
Log in

Fumonisin-stimulatedN-acetyldihydrosphingosine,N-acetylphytosphingosine, and phytosphingosine products ofPichia (Hansenula) ciferri, NRRL Y-1031

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Pichia (Hansenula) ciferri Y-1031 grown in the presence of 25–100 mg fumonisin B1/L for 4–5 days accumulated sphingolipids as evident in the centrifuged cells and extracellular particles (c/p fraction). The c/p fraction of fumonisin-treated (100 mg/L) cultures elicited a 15-fold increase ofN-acetyldihydrosphingosine and 31-fold increase of combinedN-acetylphytosphingosine and phytosphingosine over those from untreated cultures. During exponential growth of 1 day, fumonisin-treated cultures appeared to transfer sphingolipid bases into the medium (22 mg/L) rather than into the c/p (2 mg) fraction. Upon saponification, a residue from the c/p fraction contained 440 mg of additional, unknown polar lipids per liter that was not sphingolipid (14 mg/L).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Barenholz Y, Gatt S (1969) Acetylation of sphingosine bases and long-chain amines by cell-free preparations ofHansenula ciferri. Biochem Biophys Res Commun 35:676–680

    PubMed  Google Scholar 

  2. Bezuidenhout SC, Gelderblom WCA, Gorst-Allman CP, Horak RM, Marasas WFO, Spiteller G, Vleggaar R (1988) Structure elucidation of the fumonisins, mycotoxins fromFusarium moniliforme. J Chem Soc Chem Commun 11:743–745

    Google Scholar 

  3. Braun PE, Snell EE (1968) Biosynthesis of sphingolipid bases. II. Keto intermediates in synthesis of sphingosine and dihydrosphingosine by cell-free extracts ofHansenula ciferri. J Biol Chem 243:3775–3783

    PubMed  Google Scholar 

  4. DiMari SJ, Brady RN, Snell EE (1971) Biosynthesis of sphingolipid bases. IV. The biosynthetic origin of sphingosine inHansenula ciferri. Arch Biochem Biophys 143:553–565

    PubMed  Google Scholar 

  5. Gaver RC, Sweeley CC (1966) Chemistry and metabolism of sphingolipids. 3-Oxo derivatives of N-acetylsphingosine and N-acetyldihydrosphingosine. J Am Chem Soc 88:3643–3647

    PubMed  Google Scholar 

  6. Ghosh TK, Bian J, Gill DL (1990) Intercellular calcium release mediated by sphingosine derivatives generated in cells. Science 248:1653–1656

    PubMed  Google Scholar 

  7. Greene ML, Kaneshiro T, Law JH (1965) Studies on the production of sphingolipid bases by the yeast,Hansenula ciferri. Biochim Biophys Acta 98:582–588

    PubMed  Google Scholar 

  8. Hannun YA, Bell RM (1989) Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science 243:500–507

    PubMed  Google Scholar 

  9. Kaufman B, Basu S, Roseman S (1971) Isolation of glucosyl ceramides from yesat (Hansenula ciferri). J Biol Chem 246:4266–4271

    PubMed  Google Scholar 

  10. Lauter CJ, Trams EG (1962) A spectrophotometric determination of sphingosine. J Lipid Res 3:136–138

    Google Scholar 

  11. Marasas WFO, Kellerman TS, Gelderblom WCA, Coetzer JAW, Thiel PG, van der Lugt JJ (1988) Leukoencephalomalacia in a horse induced by fumonisin B1 isolated fromFusarium moniliforme Sheldon. Ondersterpoort J Vet Res 55:197–203

    Google Scholar 

  12. Merrill Jr AH, Sereni AM, Stevens VL, Hannun YA, Bell RM, Kinkade Jr JM (1986) Inhibition of phorbol ester dependent differentiation of human promyelocytic leukemic (HL-60) cells by sphinganine and other long-chain bases. J Biol Chem 261:12610–12615

    PubMed  Google Scholar 

  13. Morell P, Braun P (1972) Biosynthesis and metabolic degradation of sphingolipids not containing sialic acid. J Lipid Res 13:293–310

    PubMed  Google Scholar 

  14. Polito AJ, Sweeley CC (1971) Stereochemistry of the hydroxylation in 4-hydroxysphinganine formation and the steric course of hydrogen elimination in sphing-4-enine biosynthesis. J Biol Chem 246:4178–4187

    PubMed  Google Scholar 

  15. Samuelsson K, Samuelsson B (1970) Gas chromatographic and mass spectrometric studies of synthetic and naturally occurring ceramides. Chem Phys Lipids 5:44–49

    PubMed  Google Scholar 

  16. Snell EE, DiMari SJ, Brady RN (1970) Biosynthesis of sphingosine and dihydrosphingosine by cell-free systems fromHansenula ciferri. Chem Phys Lipids 5:116–138

    PubMed  Google Scholar 

  17. Stanacev NZ, Kates M (1963) Constitution of cerebrin from the yeastTorulopsis utilis. Can J Biochem Physiol 41:1330–1334

    PubMed  Google Scholar 

  18. Steiner S, Smith S, Waechter CJ, Lester RL (1969) Isolation and partial characterization of a major inositol-containing lipid in baker's yeast, mannosyl-diinositol, diphosphoryl ceramide. Proc Natl Acad Sci USA 64:1042–1048

    PubMed  Google Scholar 

  19. Stodola FH, Wickerham LJ, Scholfield CR, Dutton HJ (1962) Formation of extracellular sphingolipids by microorganisms. III. Triacetyl dihydrosphingosine, a metabolic product of the yeastHansenula ciferri. Arch Biochem Biophys 98:176

    PubMed  Google Scholar 

  20. Stoffel W, LeKim D, Sticht G (1968) Biosynthesis of dihydrosphingosinein vitro. Hoppe-Seyler's Z Physiol Chem 349:664–670

    PubMed  Google Scholar 

  21. Stoffel W, Sticht G, LeKim D (1968) Synthesis and degradation of sphingolipid bases inHansenula ciferri. Hoppe-Seyler's Z Physiol Chem 349:1149–1156

    PubMed  Google Scholar 

  22. Vesonder R, Peterson R, Plattner R, Weisleder D (1990) Fumonisin B1: isolation from corn culture, and purification by high performance liquid chromatography. Mycotox Res 6:85–88

    Google Scholar 

  23. Wang E, Norred WP, Bacon CW, Riley RT, Merrill Jr AH (1991) Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated withFusarium moniliforme. J Biol Chem 266:14486–14490

    PubMed  Google Scholar 

  24. Weiss B, Stiller RL (1967) Biosynthesis of phytosphingosine. Hydroxylation of dihydrosphingosine. J Biol Chem 242:2903–2908

    PubMed  Google Scholar 

  25. Wickerham LJ, Stodola FH (1960) Formation of extracellular sphingolipids by microorganisms. I. Tetraacetylphytosphingosine fromHansenula ciferri. J Bacteriol 80:484–491

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaneshiro, T., Vesonder, R.F. & Peterson, R.E. Fumonisin-stimulatedN-acetyldihydrosphingosine,N-acetylphytosphingosine, and phytosphingosine products ofPichia (Hansenula) ciferri, NRRL Y-1031. Current Microbiology 24, 319–324 (1992). https://doi.org/10.1007/BF01571101

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01571101

Keywords

Navigation