Skip to main content
Log in

Mammalian X chromosome inactivation: Testing the hypothesis of transcriptional control

  • Published:
Somatic Cell and Molecular Genetics

Abstract

Mammalian X chromosome inactivation is generally considered to be a good example of stable transcriptional repression; however, there has been no satisfactory evidence for transcriptional control. We have made a test of the hypothesis of transcriptional control by Northern blot analysis of RNA from a woman heterozygous for a mutant Hpt allele which shows no detectable transcription of wildtype mRNA. Cells from this Hpt+ Hpt woman were separated into HPRT+ and HPRT subpopulations by selection in HAT or thioguanine. The HPRT+ population (in which the Hpt+ is on the active X) transcribed normal Hpt mRNA, while the HPRT population (in which the Hpt+ allele is on the inactive X) did not. These results provide strong support for the hypothesis of transcriptional control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Lyon, M.F. (1961).Nature 190:372–373.

    PubMed  Google Scholar 

  2. Gartler, S.M., and Riggs, A.D. (1983).Annu. Rev. Genet. 17:155–190.

    PubMed  Google Scholar 

  3. Graves, J.A.M. (1983).Dev. Mammals 5:251–295.

    Google Scholar 

  4. Comings, D.E. (1966).J. Cell Biol. 28:437–441.

    PubMed  Google Scholar 

  5. Fujita, S., Takeoka, O., Kaku, H., and Nakajima, Y. (1966).Nature 210:446.

    PubMed  Google Scholar 

  6. Schneider, L.K. (1970).Experientia 26:914–916.

    PubMed  Google Scholar 

  7. Mann, K., and Mukherjee, B.B. (1970).Can. J. Genet. Cytol. 12:44–51.

    PubMed  Google Scholar 

  8. Darnell, J.E., Jelinek, W.R., and Molloy, G.R. (1973).Science 181:1215–1221.

    PubMed  Google Scholar 

  9. Comings, D. (1967).Cytogenetics 6:120–144.

    PubMed  Google Scholar 

  10. Donald, J.A., and Cooper, D.W. (1977).Aust. J. Biol. Sci. 30:103–114.

    PubMed  Google Scholar 

  11. Rao, S.R.V., and Arora, P. (1979).Chromosoma 74:241–252.

    Google Scholar 

  12. Lavelle, A.L., and Graves, J.A.M. (1982).Chromosoma 87:469–476.

    PubMed  Google Scholar 

  13. Francke, U., Felsenstein, J. Gartler, S.M., Migeon, B.R., Dancis, J., Seegmiller, J.E., Bakay, F., and Nyhan, W.L. (1976).Am. J. Hum. Genet. 28:123–137.

    PubMed  Google Scholar 

  14. Szybalski, W., Szybalska, E.H., and Ragni, G. (1962).Natl. Cancer Inst. Monogr. 7:75–89.

    Google Scholar 

  15. Goto, K., Maeda, S., Kano, Y., and Sugiyama, T. (1978).Chromosoma 66:351–359.

    PubMed  Google Scholar 

  16. Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J., and Rutter, W.J. (1979).Biochemistry 18:5294–5299.

    PubMed  Google Scholar 

  17. Lehrach, H., Diamond, D., Wozney, J.M., and Boedtker, H. (1977).Biochemistry 16:4743–4751.

    PubMed  Google Scholar 

  18. Thomas, P.S. (1980).Proc. Natl. Acad. Sci. U.S.A. 77:5201–5205.

    PubMed  Google Scholar 

  19. Jolly, D.J., Okayama, H., Berg, P., Esty, A.C., Filpula, D., Bohlen, P., Johnson, G.G., Shively, J.E., Hunkapillar, T., and Friedmann, T. (1983).Proc. Natl. Acad. Sci. U.S.A. 80:477–481.

    PubMed  Google Scholar 

  20. Stambrook, P.J., Dush, M.K., Trill, J.J., and Tischfield, J.A. (1984).Somat. Cell Mol. Genet. 10:359–367.

    PubMed  Google Scholar 

  21. Venolia, L., and Gartler, S.M. (1983).Nature 302:82–83.

    PubMed  Google Scholar 

  22. Romeo, G., and Migeon, B.R. (1975).Humangentik 29:165–170.

    Google Scholar 

  23. Zuna, R.E., and Lehman, J.M. (1977).J. Natl. Cancer Inst. 58:1463–1472.

    PubMed  Google Scholar 

  24. Goodfellow, P., Banting, G., Sheer, D., Ropers, H.H., Caine, A., Ferguson-Smith, M.A., Povey, S., and Voss, R. (1983).Nature 302:346–349.

    PubMed  Google Scholar 

  25. Polani, P.E.Hum. Genet. (1982).60:207–211.

    PubMed  Google Scholar 

  26. Migeon, B.R., Shapiro, L.J., Norum, R.A., Mohandas, T., Axelman, J., and Dabora, R.C. (1982).Nature 299:838–840.

    PubMed  Google Scholar 

  27. Gartler, S.M., Dyer, K.A., Graves, J.A.M., and Rocci, M. (1985). InChemistry, Biochemistry and Biology of DNA Methylation. Cantoni, G.L., and Razin, A. (eds). Alan R. Liss, New York, pp. 223–235.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graves, J.A.M., Gartler, S.M. Mammalian X chromosome inactivation: Testing the hypothesis of transcriptional control. Somat Cell Mol Genet 12, 275–280 (1986). https://doi.org/10.1007/BF01570786

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01570786

Keywords

Navigation