Skip to main content
Log in

The effect of cocultivation with hydrogen-consuming bacteria on xylanolysis byRuminococcus flavefaciens

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The rate and extent of xylan utilization and the specific activities of extracellular polysaccharide-degrading enzymes formed byRuminococcus flavefaciens FD1 were increased by cocultivation withMethanobrevibacter smithii PS. As a consequence of interspecies hydrogen transfer interactions, the fermentation became acetogenic; methane, not hydrogen, was formed, less succinate was produced, and formate did not accumulate in the coculture. Accumulation of xylobiose and xylose released during xylanolysis was transient in the methanogenic coculture. The interaction ofR. flavefaciens and the hydrogen-utilizing acetogenAcetitomaculum ruminis also resulted in an acetogenic fermentation, higher polysaccharolytic enzyme activities, and increased xylan utilization; the effects of cocultivation ofR. flavefaciens withEubacterium limosum were not so pronounced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Bernalier A, Fonty G, Bonnemoy F, Gouet P (1993) Inhibition of cellulolytic activity ofNeocallimastix frontalis byRuminococcus flavefaciens. J Gen Microbiol 139:873–880

    PubMed  Google Scholar 

  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    PubMed  Google Scholar 

  3. Caldwell DR, Bryant MP (1966) Medium without rumen fluid for non-selective enumeration and isolation of rumen bacteria. Appl Microbiol 14:794–801

    PubMed  Google Scholar 

  4. Dehority BA (1973) Hemicellulose degradation by rumen bacteria. Fed Proc 32:1819–1825

    PubMed  Google Scholar 

  5. Helaszek CT, White BA (1991) Cellobiose uptake and metabolism byRuminococcus flavefaciens. Appl Environ Microbiol 57:64–68

    PubMed  Google Scholar 

  6. Iannotti EL, Kafkewitz D, Wolin MJ, Bryant MP (1973) Glucose fermentation products ofRuminococcus albus grown in continuous culture withVibrio succinogenes: changes caused by interspecies hydrogen transfer. J Bacteriol 114:1231–1240

    PubMed  Google Scholar 

  7. Joblin KN, Naylor GE, Williams AG (1990) Effect ofMethanobrevibacter smithii on xylanolytic activity of anaerobic ruminal fungi. Appl Environ Microbiol 56:2287–2295

    Google Scholar 

  8. Kudo H, Cheng K-J, Costerton JW (1987) Interactions betweenTreponema bryantii and cellulolytic bacteria in thein vitro degradation of straw cellulose. Can J Microbiol 33:244–248

    PubMed  Google Scholar 

  9. Latham MJ, Wolin MJ (1977) Fermentation of cellulose byRuminococcus flavefaciens in the presence and absence ofMethanobrevibacter ruminantium. Appl Environ Microbiol 34: 297–301

    PubMed  Google Scholar 

  10. Miller TL (1991) Biogenic sources of methane. In: Rogers JE, Whitman WB (eds) Methane production and consumption of greenhouse gases: methane, nitric oxides and halomethanes. Washington, D.C.: American Society for Microbiology, pp 175–187

    Google Scholar 

  11. Miron J (1991) The hydrolysis of lucerne cell wall monosaccharide components by monocultures or pair combinations of defined ruminal bacteria. J Appl Bacteriol 70:245–252

    PubMed  Google Scholar 

  12. Pavlostathis SG, Miller TL, Wolin MJ (1990) Cellulose fermentation by continuous cultures ofRuminococcus albus andMethanobrevibacter smithii. Appl Microbiol Biotechnol 33:109–116

    Google Scholar 

  13. Pettipher GL, Latham MJ (1979) Production of enzymes degrading plant cell walls and fermentation of cellobiose byRuminococcus flavefaciens in batch and continuous culture. J Gen Microbiol 110:29–38

    Google Scholar 

  14. Rode L, Genther S, Bryant MP (1981) Syntrophic association by cocultures of the methanol and CO2−H2 utilizing speciesEubacterium limosum and pectin-fermentingLachnospira multiparus during growth in a pectin medium. Appl Environ Microbiol 42:20–22

    Google Scholar 

  15. Schaefer DM, Davis CL, Bryant MP (1980) Ammonia saturation constants for predominant species of rumen bacteria. J Dairy Sci 63:1248–1263

    PubMed  Google Scholar 

  16. Scheifinger CC, Wolin MJ (1973) Propionate formation from cellulose and soluble sugars by combined cultures ofBacteroides succinogenes andSelenomonas ruminantium. Appl Microbiol 26:789–795

    PubMed  Google Scholar 

  17. Scott HW, Dehority BA (1965) Vitamin requirements of several cellulolytic rumen bacteria. J Bacteriol 89:1169–1175

    PubMed  Google Scholar 

  18. Stewart CS, Richardson AJ, Douglas RM, Rumney CJ (1990) Hydrogen transfer in mixed cultures of anaerobic bacteria and fungi withMethanobrevibacter smithii. In: Belaich JP, Bruschi M, Garcia JL (eds) Microbiology and biochemistry of strict anaerobes involved in interspecies hydrogen transfer. New York: Plenum Press, pp 121–132

    Google Scholar 

  19. Stewart CS, Flint HJ, Nekrep FV, Kardekji E (1991) Degradation of plant cell wall polymers by the anaerobic rumen bacteriumRuminococcus flavefaciens. In: Galletti GC (ed) Production and utilization of lignocellulosics. Plant refinery and breeding, analysis, feeding to herbivores and economic aspects. London: Elsevier Applied Science, pp 387–399

    Google Scholar 

  20. Stewart CS, Duncan SH, Richardson AJ, Backwell C, Begbie R (1992) The inhibition of fungal cellulolysis by cell-free preparations from ruminococci. FEMS Microbiol Lett 97:83–88

    Google Scholar 

  21. Teunissen MJ, Kets EPW, Op den Camp HJM, Huis in't Veld JHJ, Vogels GD (1992) Effect of coculture of anaerobic fungi isolated from ruminants and nonruminants with methanogenic bacteria on cellulolytic and xylanolytic enzyme activities. Arch Microbiol 157:176–182

    PubMed  Google Scholar 

  22. Wallace RJ, Joblin KN (1985) Proteolytic activity of a rumen anaerobic fungus. FEMS Microbiol Lett 29:19–25

    Google Scholar 

  23. Williams AG, Withers SE (1982a) The production of plant cell wall polysaccharide-degrading enzymes by hemicellulolytic rumen bacterial isolates grown on a range of carbohydrate substrates. J Appl Bacteriol 52:377–387

    Google Scholar 

  24. Williams AG, Withers SE (1982b) The effect of the carbohydrate growth substrate on the glycosidase activity of hemicellulose-degrading rumen bacterial isolates. J Appl Bacteriol 52:389–401

    Google Scholar 

  25. Williams AG, Withers SE (1985) Formation of polysaccharide depolymerase and glycoside hydrolase enzymes byBacteroides ruminicola subsp.ruminicola grown in batch and continuous culture. Curr Microbiol 12:79–84

    Google Scholar 

  26. Williams AG, Withers SE, Joblin KN (1991) Xylanolysis by cocultures of the rumen fungusNeocallimastix frontalis and ruminal bacteria. Lett Appl Microbiol 12:232–235

    Google Scholar 

  27. Williams AG, Joblin KN, Butler RD, Fonty G, Bernalier A (1993) Interactions bactéries—protistes dans le rumen. Ann Biol 32:13–30

    Google Scholar 

  28. Williams AG, Joblin KN, Fonty G (1994) Interactions between the rumen chytrid fungi and other microorganisms. In: Mountfort DO, Orpin CG (eds) Anaerobic fungi. New York: Marcel Dekker, in press

    Google Scholar 

  29. Wolin MJ, Miller TL (1983) Interactions of microbial populations in cellulose fermentation. Fed Proc 42:109–113

    PubMed  Google Scholar 

  30. Wolin MJ, Miller TL (1988) Microbe-microbe interactions. In: Hobson PN (ed) The rumen microbial ecosystem. London: Elsevier Applied Science, pp 343–359

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, A.G., Withers, S.E. & Joblin, K.N. The effect of cocultivation with hydrogen-consuming bacteria on xylanolysis byRuminococcus flavefaciens . Current Microbiology 29, 133–138 (1994). https://doi.org/10.1007/BF01570753

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01570753

Keywords

Navigation