Skip to main content
Log in

Tracing the interaction of bacteriophage with bacterial biofilms using fluorescent and chromogenic probes

  • Published:
Journal of Industrial Microbiology

Abstract

Phages T4 and E79 were fluorescently-labeled with rhodamine isothiocyanate (RITC), fluoroscein isothiccyanate (FITC), and by the addition of 4′6-diamidino-2-phenylindole (DAPI) to phage-infected host cells ofEscherichia coli andPseudomonas aeruginosa. Comparisons of electron micrographs with scanning confocal laser microscope (SCLM) images indicated that single RITC-labeled phage particles could be visualized. Biofilms of each bacterium were infected by labeled phage. SCLM and epifluorescence microscopy were used to observe adsorption of phage to single-layer surface-attached bacteria and thicker biofilms. The spread of the recombinant T4 phage, YZA1 (containing an rll-LacZ fusion), within alac E. coli biofilm could be detected in the presence of chromogenic and fluorogenic homologs of galactose. Infected cells exhibited blue pigmentation and fluorescence from the cleavage products produced by the phage-encoded β-galactosidase activity. Fluorescent antibodies were used to detect nonlabeled progeny phage. Phage T4 infected both surface-attached and surface-associatedE. coli while phage E79 adsorbed toP. aeruginosa cells on the surface of the biofilm, but access to cells deep in biofilms was somewhat restricted. Temperature and nutrient concentration did not affect susceptibility to phage infection, but lower temperature and low nutrients extended the time-to-lysis and slowed the spread of infection within the biofilm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abedon ST. 1990. Selection for lysis inhibition in bacteriophage. J Theor Biol 146: 501–511.

    PubMed  Google Scholar 

  2. Adams MH. 1959. Methods of study of bacterial viruses. In: Bacteriophages (Adams MH, ed), pp 443–457, Interscience Publ, NY.

    Google Scholar 

  3. Bartell PF and TE Orr. 1969. Distinct slime polysaccharide depolymerases of bacteriophage-infectedPseudomonas aeruginosa: evidence of close association with the structured bacteriophage particle. J Virol 4(5): 580–584.

    PubMed  Google Scholar 

  4. Beckwith JR and BS Singer. 1966. Transposition of the lac region ofEscherichia coli. J Mol Biol 19: 254–265.

    PubMed  Google Scholar 

  5. Bernheimer HP and J-G Tiraby. 1976. Inhibition of phage infection byPneumococcus capsule. Virology 73: 308–309.

    PubMed  Google Scholar 

  6. Bradley DE. 1962. A study of the negative staining process. J Gen Microbiol 29: 503–516

    PubMed  Google Scholar 

  7. Bradley DE, SP Howard and H Lior. 1991. Colicinogeny of 0157:H7 enterohemorrhagicEscherichia coli and the shielding of colicin and phage receptors by theirO-antigenic side chains. Can J Microbiol 37(2): 97–104.

    PubMed  Google Scholar 

  8. Brown MRW and P Williams. 1985. The influence of environment on envelope properties affecting survival of bacteria in infections. Ann Rev Microbiol 39: 527–556.

    Google Scholar 

  9. Carrington WA, KE Fogarty, L Lifschitz and FS Fay. 1989. Threedimensional imaging on confocal and wide-field microscopes. In: Handbook of Biological Confocal Microscopy (Pawley JB, ed), pp 151–161, Plenum Press, NY.

    Google Scholar 

  10. Chao L, BR Levin and FM Stewart. 1977. A complex community in a simple habitat: an experimental study with bacteria and phage. Ecology 58: 369–378.

    Google Scholar 

  11. Cherry WB. 1974. Immunofluorescence techniques. In: Manual of Clinical Microbiology. 2nd edn (Lennette EH, EH Spaulding, and JP Truant, eds), pp 29–44, ASM, Washington, DC.

    Google Scholar 

  12. Chou Y-T and C-H Tang. 1993. Molecular characterization of bacteriophages of enterohemorrhagicEscherichia coli 0157:H7. Abstract M-6. ASM General Meeting, p. 292.

  13. Costerton JW, J-J Cheng, GG Geesey, TI Ladd, JC Nickel, M Dasgupta and TJ Marrie. 1987. Bacterial biofilms in nature and disease. Ann Rev Microbiol 41: 435–464.

    Google Scholar 

  14. Costerton JW, RT Irvin and K-J Cheng. 1981. The bacterial glycocalyx in nature and disease. Ann Rev Microbiol 35: 299–324.

    Google Scholar 

  15. Cowie DB, RJ Avery and SW Champe. 1971. DNA homology among T-even bacteriophages. Virology 45: 30–37

    PubMed  Google Scholar 

  16. Doolittle MM and JJ Cooney. 1992. Inactivation of bacteriophage T4 by organic and inorganic tin compounds. J Ind Microbiol 10: 221–228.

    Google Scholar 

  17. Doolittle MM, JJ Cooney and DE Caldwell. 1995. Lytic infection ofEscherichia coli biofilms by bacteriophage T4. Can J Microbiol 41: 12–18.

    PubMed  Google Scholar 

  18. Ellis EL and M Delbruck. 1939. The growth of bacteriophage. J Gen Physiol 22: 365–384.

    Google Scholar 

  19. Entwistle A and M Noble. 1992. The use of Lucifer yellow, bodipy, FITC, TRITC, RITC and Texas red for dual immunofluorescence visualized with a confocal scanning laser microscope. J Microscopy Oxford 168(3): 219–238.

    Google Scholar 

  20. Fuhrman JA and CA Suttle. 1993. Viruses in marine planktonic systems. Oceanography 6(2): 51–63.

    Google Scholar 

  21. Furukawa H, T Kuroiwa and S Mizushima. 1983. DNA injection during bacteriophage T4 infection ofEscherichia coli. J Bacteriol 154(2): 938–945.

    PubMed  Google Scholar 

  22. Germida JJ and LE Casida, Jr. 1983.Ensifer adhaerens predatory activity against other bacteria in soil, as monitored by indirect phage analysis. Appl Environ Microbiol 45: 1380–1388.

    Google Scholar 

  23. Hantke K and V Braun. 1974. Fluorescence studies on first steps of phage-host interactions. Virology 58: 310–312.

    PubMed  Google Scholar 

  24. Hara S, K Terauchi and I Koike. 1991. Abundance of viruses in marine waters: assessment by epifluorescence and transmission electron microscopy. Appl Environ Microbiol 57(9): 2731–2734.

    Google Scholar 

  25. Jiang SC and JH Paul. 1994. Seasonal and diel abundance of viruses and occurrence of lysogeny/bacteriocinogeny in the marine environment. Mar Ecol Prog Ser 104: 163–172.

    Google Scholar 

  26. Kokjohn TA, CD Montemagno and JF Manning, Jr. 1992. Characterization of a bacteriophage from bioreactors treating contaminated soil. Abstract Q-159; ASM General Meeting, p 362.

  27. Kokjohn TA, GS Sayler and RV Miller. 1991. Attachment and replication ofPseudomonas aeruginosa bacteriophages under conditions simulating aquatic environments. J Gen Microbiol 137: 661–666.

    Google Scholar 

  28. Lawrence JR and DE Caldwell. 1987. Behavior of bacterial stream populations within the hydrodynamic boundary layers of surface micro-environments. Microb Ecol 14: 15–27.

    Google Scholar 

  29. Lenski RE. 1988. Dynamics of interactions between bacteria and virulent bacteriophage. In: Advances in Microbial Ecology, Vol 10 (Marshall KC, ed), pp 1–44, Plenum Press, NY.

    Google Scholar 

  30. Lewandowski Z. 1994. Chemical and electrical heterogeneity within bacterial biofilms. Session 313 (J): Architecture of bacterial biofilms. ASM General Meeting, p 161.

  31. Maniatis T, EF Fritsch and J Sambrook. 1982. In: Molecular Cloning, A Laboratory Manual. Cold Spring Harbor Laboratory, NY, 545 pp.

    Google Scholar 

  32. Martin DR. 1973. Mucoid variation inPseudomonas aeruginosa by the action of phage. J Med Microbiol 6: 111–118.

    PubMed  Google Scholar 

  33. Morrison WD, RV Miller and GS Sayler. 1978. Frequency of F-116-mediated transduction ofPseudomonas aeruginosa in a freshwater environment. Appl Environ Microbiol 36(5): 724–730.

    PubMed  Google Scholar 

  34. Ogunseitan OA, GS Sayler and RV Miller. 1990. Dynamic interactions ofPseudomonas aeruginosa and bacteriophages in lake water. Microb Ecol 19: 171–185.

    Google Scholar 

  35. Paynter MJB and HR Bungay, III. 1970. Capsular protection against virulent coliphage infection. Biotechnol & Bioengin 12: 341–346.

    Google Scholar 

  36. Ramsey WS, ED Nowlan, LB Simpson, RA Messing and MM Takeguchi. 1980. Applications of fluorophore-containing microbial growth media. Appl Environ Microbiol 39(2): 372–375.

    PubMed  Google Scholar 

  37. Roy B, H-W Ackermann, G Picard and J Gould. 1993. Biological inactivation of surface-adheringListeria monocytogenes by listeriaphages and a quaternary ammonium compound. Appl Environ Microbiol 59: 2914–2917.

    PubMed  Google Scholar 

  38. Saye DJ, OA Ogunseitan, GS Sayler and RV Miller. 1990. Transduction of linked chromosomal genes betweenPseudomonas aeruginosa strains during incubationin situ in a freshwater habitat. Appl Environ Microbiol 56(1): 140–145.

    PubMed  Google Scholar 

  39. Shub DA and NJ Casna. 1985. Bacteriophage T4, a new vector for the expression of cloned genes. Gene 37: 31–36.

    PubMed  Google Scholar 

  40. Stirm S and E Freund-Molbert. 1971.Escherichia coli capsule bacteriophages. J Virol 8(3): 330–342.

    PubMed  Google Scholar 

  41. Thurow H, H Niemann, C Rudolph and S Stirm. 1974. Host capsule depolymerase activity of bacteriophage particles active onKlebsiella K20 and K24 strains. Virology 58: 306–309.

    PubMed  Google Scholar 

  42. Van der Ley P, P De Graaf and J Tommassen. 1986. Shielding ofEscherichia coli outer membrane proteins as receptors for bacteriophages and colicins byo-antigenic chains of lipopolysaccharide. J Bacteriol 168(1): 449–451.

    PubMed  Google Scholar 

  43. Wolfaardt GM, REM Archibald and TE Cloete. 1991. The use of DAPI in the quantitation of sessile bacteria on submerged surfaces. Biofouling 4: 265–274.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doolittle, M.M., Cooney, J.J. & Caldwell, D.E. Tracing the interaction of bacteriophage with bacterial biofilms using fluorescent and chromogenic probes. Journal of Industrial Microbiology 16, 331–341 (1996). https://doi.org/10.1007/BF01570111

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01570111

Keywords

Navigation