Skip to main content
Log in

Biofilms in device-related infections

  • Published:
Journal of Industrial Microbiology

Abstract

The use of various medical devices including indwelling vascular catheters, cardiac pacemakers, prosthetic heart valves, chronic ambulatory peritoneal dialysis catheters and prosthetic joints has greatly facilitated the management of serious medical and surgical illness. However, the successful development of synthetic materials and introduction of these artificial devices into various body systems has been accompanied by the ability of microorganisms to adhere to these devices in the environment of biofilms that protect them from the activity of antimicrobial agents and from host defense mechanisms. A number of host, biomaterial and microbial factors are unique to the initiation, persistence and treatment failures of device-related infections. Intravascular catheters are the most common devices used in clinical practice and interactions associated with these devices are the leading cause of nosocomial bacteremias. The infections associated with these devices include insertion site infection, septic thrombophlebitis, septicemia, endocarditis and metastatic abscesses. Other important device-related infections include infections of vascular prostheses, intracardiac prostheses, total artificial hearts, indwelling urinary catheters, orthopedic prostheses, endotracheal tubes and extended wear lenses. The diagnosis and management of biofilm-associated infections remain difficult but critical issues. Appropriate antimicrobial therapy is often not effective in eradicating these infections and the removal of the device becomes necessary. Several improved diagnostic and therapeutic modalities have been reported in recent experimental studies. The clinical usefulness of these strategies remains to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anwar H, T Van Biesen, M Dasgupta, K Lam and JW Costerton. 1989. Interaction of biofilm bacteria with antibiotics in a novelin vitro chemostat system. Antimicrob Agents Chemother 33: 1824–1826.

    PubMed  Google Scholar 

  2. Baier RE. 1982. Conditioning surfaces to suit the biomedical environment: recent progress. J Biomed Eng 104: 257–271.

    Google Scholar 

  3. Baier R, AE Meyer, JR Natiella, RR Natiella and JM Carter. 1984. Surface properties determine bioadhesive outcomes: methods and results. J Biomed Mater Res 18: 337–355.

    Google Scholar 

  4. Bandyk DF, TM Bergamini, EV Kinney, GR Seabrook and JB Towne. 1991. In situ replacement of vascular protheses infected by bacterial biofilms. J Vasc Surg 13: 575–583.

    PubMed  Google Scholar 

  5. Banerjee C, CI Bustamante, R Wharton, E Talley and JC Wade. 1988. Bacillus infections in patients with cancer. Arch Intern Med 148: 1769–1774.

    PubMed  Google Scholar 

  6. Benezra D, TE Kiehn, GWM Gold, AE Brown, ADM Turnbull and D Armstrong. 1988. Prospective study of infections in indwelling central venous catheters using quantitative blood cultures. Am J Med 85: 495–499.

    PubMed  Google Scholar 

  7. Bjornson HS, R Colley, RH Bower, VP Duty, JT Schwartz-Fulton and JE Fisher. 1982. Association between microorganism growth at the catheter insertion site and colonization of the catheter in patients receiving total parenteral nutrition. Surgery 92: 720–726.

    PubMed  Google Scholar 

  8. Blenkinsopp SA, AE Khoury and JW Costerton. 1992. Electrical enhancement of biocide efficacy againstPseudomonas aeruginosa biofilms. Appl Environ Microbiol 58: 3770–3773.

    PubMed  Google Scholar 

  9. Brun-Buisson C, F Abrouk, P Legrand, Y Huet, S Larabi and M Rapin. 1987. Diagnosis of central venous catheter-related sepsis: critical level of quantitative tip cultures. Arch Intern Med 147: 873.

    PubMed  Google Scholar 

  10. Busscher HJ, I Stokroos and JM Schakenraad. 1991. Two-dimensional, spatial arrangement of fibronectin adsorbed to biomaterials with different wettabilities. Cells and Materials 1: 49–57.

    Google Scholar 

  11. Busscher HJ, HC Van Der Mei and JM Schakenraad. 1991. Analogies in the two-dimensional spatial arrangements of adsorbed proteins and adhering bacteria: bovine serum albumin andStreptococcus sanguis 12. J Biomat Sci Polymer EDN 3: 85094.

    Google Scholar 

  12. Chaudhari P. 1986. Electronic and magnetic materials. Scient Am 255: 136–144.

    Google Scholar 

  13. Cleri DJ, ML Corrado and SJ Selignam. 1980. Quantitative culture of intravenous catheters and other intravascular inserts. J Infect Dis 141781–141786.

  14. Collignon PG, N Soni, IY Pearson, WP Woods, R Munro and RC Sorrell. 1986. Is semiquantitative culture of central vein catheter tips useful in the diagnosis of catheter-associated bacteremia? J Clin Microbiol 24: 532–535.

    PubMed  Google Scholar 

  15. Costerton JW, RT Irvin and KJ Cheng. 1981. The bacterial glycocalyx in nature and disease. Annu Rev Microbiol 35: 299–324.

    PubMed  Google Scholar 

  16. Costerton JW and HM Lappin-Scott. 1989. Behavior of bacteria in biofilms. ASM News. 650.

  17. Dickinson GM and AL Bisno. 1989. Infections associated with indwelling devices: concepts of pathogenesis: infections associated with intravascular devices. Antimicrob Agents Chemother 33: 597.

    Google Scholar 

  18. Dickinson GM and AL Bisno. 1993. Infections associated with prosthetic devices: clinical considerations. Int J Artif Organs 16: 749–754.

    PubMed  Google Scholar 

  19. Dudman WF. 1977. The role of surface polysaccharides in natural environments. In: Surface Carbohydrates of the Prokaryotic Cell (Sutherland IW, ed), pp 357–414, Academic Press, New York.

    Google Scholar 

  20. Dugdale DC and PG Ramsey. 1990.Staphylococcus aureus bacteremia in patients with Hickman catheters. Am J Med 89: 137–141.

    PubMed  Google Scholar 

  21. Elting LS and GP Bodey. 1990. Septicemia due toXanthomonas species and non-aeruginosaPseudomonas species: increasing incidence of catheter-related infections. Medicine (Baltimore) 69: 296–306.

    Google Scholar 

  22. Elting K, N Khardori, GP Bodey and V Fainstein. 1990. Nosocomial infection caused byXanthomonas maltophilia: a case-control study of predisposing factors. J Infect Contr Hosp Epidemiol 11: 134.

    Google Scholar 

  23. Engel T. 1986. Low-energy atom scattering from surfaces. Science 234: 327–333.

    Google Scholar 

  24. Eppes SC, JL Troutman and LT Gutman. 1989. Outcome of treatment of candidemia in children whose central venous were removed or retained. Pediatr Infect Dis J 8: 99–104.

    PubMed  Google Scholar 

  25. Fletcher M. 1980. Adherence of marine microorganisms to smooth surfaces. In: Bacterial Adherence: Receptors and Recognition. Series B (Beachey EH, ed), pp 345–374, Chapman and Hall, London.

    Google Scholar 

  26. Garner JS, WR Jarvis, TG Emori, TC Horan and JM Hughes. 1988. CDC definitions for nosocomial infections. Am J Infect Contro 16: 128–140.

    Google Scholar 

  27. Gil RT, JA Kruse, MC Thill-Baharozian and RW Carlson. 1989. Triple vs single-lumen central venous catheters. Arch Intern Med 149: 1139–1143.

    PubMed  Google Scholar 

  28. Gomer R. 1982. Surface diffusion. Sci Am 247: 98–109.

    Google Scholar 

  29. Gristina AG. 1987. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 237: 1588–1595.

    PubMed  Google Scholar 

  30. Gristina AG and JW Costerton. 1984. Bacteria-laden biofilms: a hazard to orthopedic prostheses. Infect Surg 3: 655.

    Google Scholar 

  31. Gristina AG, JJ Dobbins, B Giammara, JC Lewis and WC DeVries. 1988. Biomaterial-centered sepsis and the total artificial heart. JAMA 259: 870–874.

    PubMed  Google Scholar 

  32. Gristina AG, G Giridhar, BL Gabriel, PT Naylor and QN Myrvik. 1993. Cell biology and molecular mechanisms in artificial device infections. Int J Artif Organs 16: 755–764.

    PubMed  Google Scholar 

  33. Hampton AA and RJ Sherertz. 1988. Vascular-access infections in hospitalized patients. Surg Clin North Am 68: 57–71.

    PubMed  Google Scholar 

  34. Herrmann M, PE Vaudaux, D Pittet et al. 1988. Fibronectin, fibrinogen and laminin act as mediators of adherence of clinical staphylococcal isolates to foreign material. J Infect Dis 158: 693–701.

    PubMed  Google Scholar 

  35. Hiemenz J, J Skelton and PA Pizzo. 1986. Perspective on the management of catheter-related infections in cancer patients. Pediatr Infect Dis J 5: 6–11.

    Google Scholar 

  36. Hogt AH, J Dankert and J Feijen. 1983. Encapsulation, slime production and surface hydrophobicity of coagulase-negative staphylococci. FEMS Microbiol Lett 18: 211–215.

    Google Scholar 

  37. Kasemo B and J Lausmaa. 1986. Surface science aspects on inorganic biomaterials. CRC Crit Rev Biocompat 2: 335–380.

    Google Scholar 

  38. Khardori N, T Karich and K Wilson. 1992. Comparison of qualitative and quantitative methods of slime (glycocalyx) production byStaphylococcus epidermidis isolated from indwelling vascular catheters. Abst 92 Annu Meet Am Soc Microbiol, B-241, 66.

  39. Jones HC, IL Roth and WM Sanders III. 1969. Electron microscopic study of a slime layer. J Bacteriol 99: 316–325.

    PubMed  Google Scholar 

  40. Laskowski LF, JJ Marr, JF Spernoga et al. 1977. Fastidious mycobacteria grown from porcine prosthetic-heart-valve cultures. N Engl J Med 297: 101.

    PubMed  Google Scholar 

  41. Libman H and RD Arbett. 1984. Complications associated withStaphylococcus aureus bacteremia. Arch Intern Med 144: 541–545.

    PubMed  Google Scholar 

  42. Maki DG. 1989. Pathogenesis, prevention, and management of infections due to intravascular devices used for infusion therapy. In: Infections Associated with Indwelling Medical Devices (Bisno BL and FA Waldvogel, eds), pp 161–177, American Society for Microbiology, Washington, DC.

    Google Scholar 

  43. Maki DG, CE Weise and HW Sarafin. 1977. A semiquantitative culture method for identifying intravenous catheter-related infections. N Engl Med 296: 1305–1309.

    Google Scholar 

  44. Marrie TJ and JW Costerton. 1983. A scanning and transmission electron microscopic study of the surface of intrauterine contraceptive devices. Am J Obstet Gynecol 146: 384–394.

    PubMed  Google Scholar 

  45. Marrie TJ and JW Costerton. 1983. Scanning electron microscopic study of uropathogen adherence to a plastic surface. Appl Environ Microbiol 45: 1018–1024.

    PubMed  Google Scholar 

  46. Marrie TJ, GKM Harding, AR Ronald, J Dikkema, J Lam, S Hoban and JW Costerton. 1979. Influence of antibody coating ofPseudomonas aeruginosa. J Infect Dis 19: 357–361.

    Google Scholar 

  47. Marrie TJ, J Nelligan and JW Costerton. 1982. A scanning and transmission electron microscopic study of an infected endocardial pacemaker lead. Circulation 66: 1339–1341.

    PubMed  Google Scholar 

  48. Martino P, A Micozzi, M Venditti et al. 1990. Catheter-related right-sided endocarditis in bone marrow transplant recipients. Rev Infect Dis 12: 250–257.

    PubMed  Google Scholar 

  49. Michel L, JC McMichan and JL Bachy. 1979. Microbial colonization of indwelling central venous catheters: statistical evaluation of potential contamination factors. Am J Surg 137: 745–748.

    PubMed  Google Scholar 

  50. Miramanoff RO and MP Glauser. 1982. Endocarditis duringStaphylococcus aureus septicemia in a population of non-drug addicts. Arch Intern Med 142: 1311–1313.

    PubMed  Google Scholar 

  51. Moyer MA, LD Edwards and L Farley. 1983. Comparative culture methods on 101 intravenous catheters. Arch Intern Med 143: 66–69.

    PubMed  Google Scholar 

  52. Mylotte JM and C McDermott. 1987.Staphylococcus aureus bacteremia caused by infected intravenous catheters. Am J Infect Control 15: 1–6.

    PubMed  Google Scholar 

  53. Nickel JC, AG Gristina and JW Costerton. 1985. Electron microscopic study of an infected Foley catheter. Can J Surg 28: 50.

    PubMed  Google Scholar 

  54. Noonan JR and H Davis. 1986. Atomic arrangements at metal surfaces. Science 234: 310–316.

    Google Scholar 

  55. Pashley RM, PM McGuiggan, BW Ninham and DF Evans. 1985. Attractive forces between uncharged hydrophobic surfaces: direct measurements in aqueous solution. Science 229: 1088–1089.

    PubMed  Google Scholar 

  56. Petty W. 1978. The effect of methylmethacrylate on bacterial phagocytosis and killing by human polymorphonuclear leukocytes. J Bone JT Surg Am 60: 752.

    Google Scholar 

  57. Petty W. 1978. The effect of methylmethacrylate on chemotaxis of polymorphonuclear leukocytes. J Bone JT Surg Am 60: 492.

    Google Scholar 

  58. Platt R, BF Polk, B Murdock and B Rosner. 1982. Mortality associated with nosocomial urinary-tract infection. N Engl J Med 307: 637–642.

    PubMed  Google Scholar 

  59. Powell C, KA Kudsk, PA Kulich, JA Mandelbaum and PJ Fabri. 1988. Effect of frequent guidewire changes on triple-lumen catheter sepsis. J PEN J Parenter Enteral Nutri 12: 464–465.

    Google Scholar 

  60. Prager RL and J Silva, Jr. 1984. Colonization of central venous catheters. South Med J 77: 458–461.

    PubMed  Google Scholar 

  61. Pulverer G, P Quie and G Peters, eds. 1987. In: Pathogenesis and Clinical Significance of Coagulase-negative Staphylococci. Zentralbl Bakteriol. Mikobiol. Hyg.(A) Suppl 16. Gustav Fischer: Stuttgart.

    Google Scholar 

  62. Raad II, S Davis, A Khan, J Tarrand and GP Bodey. 1992. Catheter removal affects recurrence of catheter-related coagulase-negative staphylococci bacteremia (CRCNSB). Infect Control Hosp Epidemiol 13: 215–221.

    PubMed  Google Scholar 

  63. Raad II and MF Sabbagh. 1992. Optimal duration of therapy for catheter relatedStaphylococcus aureus bacteremia: a study of 55 cases and review. Rev Infect Dis 14: 75–82.

    Google Scholar 

  64. Raad II, MF Sabbagh, KH Rand and RJ Sherertz. 1991. Quantitative tip culture methods and the diagnosis of central venous catheter-related infections. Diagn Microbiol Infect Dis 15: 13–20.

    Google Scholar 

  65. Saleh RA and MA Schorin. 1987.Bacillus spp sepsis associated with Hickman catheters in patients with neoplastic disease. Pediatr Infect Dis J 6: 851–856.

    PubMed  Google Scholar 

  66. Sheretz RJ, II Raad, A Balani et al. 1990. Three-year experience with sonicated vascular catheter cultures in a clinical microbiology laboratory. J Clin Microbiol 28: 76–82.

    PubMed  Google Scholar 

  67. Sheth NK, RTR Franson, HD Rose et al. 1983. Colonization of bacteria on polyvinyl chloride and teflon intravascular catheters in hospitalized patients. J Clin Microbiol 18: 1061.

    PubMed  Google Scholar 

  68. Slusher MM, QN Quentin, JC Lewis and AG Gristina. 1987. Extended-wear lenses, biofilm and bacterial adhesion. Arch Opthalmol 105: 110–115.

    Google Scholar 

  69. Snydman DR, SA Murray, SJ Kornfeld, JA Majka and CA Ellis. 1982. Total parenteral nutrition-related infections: prospective epidemiologic study using semiquantitative methods. Am J Med 73: 695–699.

    PubMed  Google Scholar 

  70. Sottile FD, TJ Marrie, DS Prough, CD Hobgood, DJ Gower, LX Webb, JW Costerton and AG Gristina. 1986. Nosocomial pulmonary infection: possible etiologic significance of bacterial adhesion to endotracheal tubes. Crit Care Med 14: 265–270.

    PubMed  Google Scholar 

  71. Stamm WE. 1975. Guidelines for prevention of catheter-associated urinary tract infections. Ann Intern Med 82: 386–390.

    PubMed  Google Scholar 

  72. Stern GA, A Lubniewski and C Allen. 1985. The interaction betweenPseudomonas aeruginosa and the corneal epithelium: an electron microscopic study. Arch Ophthalmol 103: 1221–1225.

    PubMed  Google Scholar 

  73. Strinden WD, RB Helgerson and DG Maki. 1985.Candida septic thrombosis of the great central veins associated with central catheters. Ann Surg 202: 653–658.

    PubMed  Google Scholar 

  74. Vaudaux P, D Pittet, A Haeberli et al. 1989. Host factors selectively increase staphylococcal adherence on inserted catheters: a role for fibronectin and fibrinogen or fibrin. J Infect Dis 160: 865–875.

    PubMed  Google Scholar 

  75. Wang EEL, CG Prober, L Ford-Jones and R Gold. 1984. The management of central intravenous catheter infections. Pediatr Infect Dis 3: 110–113.

    PubMed  Google Scholar 

  76. Warren JW, HL Muncie, EJ Bercquist and JM Hoopes. 1981. Sequelae and management of urinary infection in the patient requiring chronic catheterization. J Urol 124: 1–8.

    Google Scholar 

  77. Warren JW, JH Tenney, JM Hoopes, HL Muncie and WC Anthony. 1982. A prospective microbiologic study of bacteriuria in patients with chronic indwelling urethral catheters. J Infect Dis 146: 719–723.

    PubMed  Google Scholar 

  78. Watnakunakorn C and IM Baird. 1977.Staphylococcus aureus bacteremia and endocarditis associated with a removable intravenous device. Am J Med 63: 253–256.

    PubMed  Google Scholar 

  79. Yasuda H, Y Ajiki, T Koga and T Yokota. 1994. Interaction between clarithromycin and biofilms formed byStaphylococcus epidermidis. Antimicrob Agents Chemother 38: 138–141.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khardori, N., Yassien, M. Biofilms in device-related infections. Journal of Industrial Microbiology 15, 141–147 (1995). https://doi.org/10.1007/BF01569817

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01569817

Keywords

Navigation