Skip to main content
Log in

The relationship between the energetic efficiency in different micro-organisms and the rate and type of metabolite overproduced

  • Original Papers
  • Published:
Journal of Industrial Microbiology

Summary

Data regarding the degree of energy conservation as determined by the\(Y_{O_2 }^{\max } \) and the highest rates of metabolite production reported for various micro-organisms have been collated and analysed. The results have indicated that the highest rates of metabolite production occur in micro-organisms possessing low efficiencies of energy conservation. Moreover, in the case of exopolysaccharide production the oxidation state of the polymer is inversely related to the\(Y_{O_2 }^{\max } \) value of the producing organism. In general, the rate of ATP turnover associated with exopolysaccharide production or the potential rate associated with over-production of other metabolites is inversely related to the\(Y_{O_2 }^{\max } \) value of the producing organism. Analysis of current production rates for a range of metabolites suggests that there is scope for major improvements of existing processes by careful selection of appropriate micro-organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aiking, H., A. Sterkenbury and D.W. Tempest 1977. Influence of specific growth limitation and dilution rate on the phosphorylation efficiency and cytochrome content of mitochondria ofCandida utilis NCYC 321. Arch. Microbiol. 113: 65–72.

    PubMed  Google Scholar 

  2. Anthony, C. 1982. The Biochemistry of Methylotrophs. Academic Press, London.

    Google Scholar 

  3. Betlach, M.R., M.A. Capage, D.H. Doherty, R.A. Hassler, N.M. Henderson, R.W. Vanderslice, J.D. Marrelli and M.B. Ward, 1987. Genetically engineered polymers: manipulation of xanthan biosynthesis. In: Industrial Polysaccharides. Progress in Biotechnology, Vol. 3 (Yalpani, M., ed.), pp. 35–50, Elsevier, Amsterdam.

    Google Scholar 

  4. Cadmus, M.C., H. Gasdorf, A.A. Lagoda, R.F. Anderson and R.W. Jackson. 1963. New bacterial polysaccharide fromArthrobacter. Appl. Microbiol. 11: 488–492.

    PubMed  Google Scholar 

  5. Cadmus, M.C., A.A. Lagoda and R.F. Anderson. 1962. Production of a new polysaccharide withCryptococcus laurentii varflavescens. Appl. Microbiol. 10: 152–156.

    Google Scholar 

  6. Carter, B.L.A., A.T. Bull, S.J. Pirt and B.I. Rowley. 1971: Relationship between energy substrate utilisation and specific growth rate inAspergillus nidulans. J. Bacteriol. 108: 309–313.

    PubMed  Google Scholar 

  7. Cooper, D.G. and D.A. Paddock. 1984. Production of biosurfactant fromTorulopsis bombicola. Appl. Environ. Microbiol. 47: 173–176.

    Google Scholar 

  8. Cripps, R.E., R.N. Ruffell and A.J. Sturman. 1984. Fluid displacement with heteropolysaccharide solutions, and microbial production of heteropolysaccharide. European Patent Specification 0040445.

  9. Davis, E.N., R.A. Rhodes and R.H. Shulke. 1965. Fermentative production of exocellular glucans by fleshy fungi. Appl. Microbiol. 13: 267–271.

    PubMed  Google Scholar 

  10. Deavin, L., T.R. Jarman, C.J. Lawson, R.C. Righelato and S. Slocombe. 1977. The production of alginic acid byAzotobacter vinelandii in batch and continuous culture. In: Extracellular Microbial Polysaccharides (Sandford, P.A. and A. Laskin, eds.), pp. 14–26, American Chemical Society, Washington, DC.

    Google Scholar 

  11. Demain, A.L. 1968. Regulatory mechanisms and the industrial production of microbial metabolites. Lloydia 31: 395–418.

    Google Scholar 

  12. Demain, A.L. 1971. Overproduction of microbial metabolites and enzymes due to alteration of regulation. Adv. Biochem. Eng. 1: 113–142.

    Google Scholar 

  13. Dostalek, M. and N. Molin. 1975. Studies of biomass production or methanol oxidising bacteria. In Single Cell Protein, Vol. 11 (Tannebaum, S.R. and D.I.C. Wang, eds.), pp. 385–401, MIT Press, Cambridge, MA.

    Google Scholar 

  14. Drozd, J.W. 1978. Respiration and energy conservation inAzotobacter vinelandii. FEMS Microbiol. Lett. 3: 47–49.

    Google Scholar 

  15. Ellwood, D.C., I. Davidson, R.C. Righelato and C.E. Smith. 1978. Process for the production of Xanthan gum. United Kingdom Patent Application 2 008 138 A.

  16. Eveleigh, D.E. 1973. Microbial monosaccharides and polysaccharides. In: Handbook of Microbiology (Laskin, A.I. and H.A. Lechevalier, eds.), pp. 89–96, CRC Press, Cleveland.

    Google Scholar 

  17. Farrand, S.G., C.W. Jones, J.D. Linton and R.J. Stephenson. 1983. The effect of temperature and pH on the growth efficiency of the thermoacidophilic bacteriumBacillus acidocaldarius in continuous culture. Arch. Microbiol. 135: 276–283.

    Google Scholar 

  18. Frankena, J., H.W. van Verseveld and A.H. Stouthamer. 1985. A continuous culture study of the bioenergetic aspects of growth and production of exocellular protease inBacillus licheniformis. Appl. Microbiol. Biotechnol. 22: 169–171.

    Google Scholar 

  19. Guerra-Santos, L., O. Kappeli and A. Fiechter. 1984.Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl. Environ. Microbiol. 48: 301–305.

    PubMed  Google Scholar 

  20. Hacking, A.J., I.W.F. Taylor, T.R. Jarman and J.R.W. Govan. 1983. Alginate biosynthesis byPseudomonas mendocina. J. Gen. Microbiol. 129: 3473–3480.

    Google Scholar 

  21. Hermandez, E. and M.J. Johnson. 1967. Energy supply and cell yield in aerobically grown microorganism. J. Bacteriol. 94: 996–1001.

    PubMed  Google Scholar 

  22. Heuting, S. and D.W. Tempest. 1977. Influence of acetate on the growth ofCandida utilis in continuous culture. Arch. Microbiol. 115: 73–78.

    PubMed  Google Scholar 

  23. Jarman, T.R. and G.W. Pace. 1984. Energy requirements for microbial exopolysaccharide synthesis. Arch. Microbiol. 137: 231–235.

    Google Scholar 

  24. Jeans, A. 1964. Extracellular microbial polysaccharides: new hydrocolloids having both fundamental and practical properties. In: Water-Soluble Polymers, Plenum Press, New York.

    Google Scholar 

  25. Jones, C.W. 1977. Aerobic respiratory systems in bacteria. In: Microbial Energetics: Society for General Microbiology Symposium No. 27. (Haddock, B.A. and W.A. Hamilton, eds.), pp. 23–60, Cambridge University Press, London.

    Google Scholar 

  26. Kang, K.S., G.T. Veeder and D.D. Richey. 1981. Polysaccharide and bacterial fermentation process for its preparation. United States Patent 4, 286, 059.

    Google Scholar 

  27. Reference deleted.

  28. Kristiansen, B. and R. Charley. 1981. Continuous process for production of citric acid. In Advances in Biotechnology I: Proceedings of the 6th International Fermentation Symposium (Moo-Young, M., ed.), pp. 221–227, Pergamon Press, Toronto.

    Google Scholar 

  29. Kristiansen, B. and C.G. Sinclair. 1979. Production of citric acid in continuous culture. Biotechnol. Bioeng. 21: 297–315.

    Google Scholar 

  30. Kula, M.R., Y. Aharonowitz, J.D. Bulock, A.M. Chakrabarty, D.A. Hopwood, B. Mathiasson, J.G. Morris, O.M. Neijssel and H. Satim. 1987. Microbiology and Industrial Products. Group Report in Biotechnology: Potentials and Limitations (Dahlem Konferenzen 1986) (Silver, S., ed.), pp. 71–81, Springer-Verlag, Berlin.

    Google Scholar 

  31. Linton, J.D., R.M. Austin and D.E. Haugh. 1984. The kinetics and physiology of stipitatic acid and gluconate production by carbon sufficient cultures ofPenicillium stipitatum growing in continuous culture. Biotechnol. Bioeng. 24: 1455–1464.

    Google Scholar 

  32. Linton, J.D., M. Evans, D.S. Jones and D.N. Gouldney. 1987. Exocellular succinoglucan production byAgrobacterium radiobacter NCIB 11883. J. Gen. Microbiol. 133: 2961–2969.

    Google Scholar 

  33. Linton, J.D., D.N. Gouldney and S. Woodard. 1988. The efficiency and stability of extracellular polysaccharide production from different carbon sources byErwinia herbicola. J. Gen. Microbiol. 134: 1913–1921.

    Google Scholar 

  34. Linton, J.D., J. Griffiths and M. Gregory. 1981. The effect of mixtures of glucose and formate on the yield and respiration of a chemostat culture ofBeneckea natriegens. Arch. Microbiol. 129: 119–122.

    Google Scholar 

  35. Linton, J.D., D.S. Jones and S. Woodard. 1987. Factors that control the rate of exopolysaccharide production inAgrobacterium radiobacter NCIB 11883. J. Gen. Microbiol. 133: 2979–2987.

    Google Scholar 

  36. Reference deleted.

  37. Linton, J.D., P.D. Watts, R.M. Austin, D.E. Haugh and H.G.D. Niekus. 1986. The energetics and kinetics of extracellular polysaccharide production from methanol by microorganisms possessing different pathways of C1 assimilation. J. Gen. Microbiol. 132: 779–788.

    Google Scholar 

  38. Mason, H.R.S. and R. Righelato. 1976. Energetics of fungal growth: the effect of growth-limiting substrate on respiration ofPenicillium chrysogenum. J. Appl. Chem. Biotechnol. 26: 145–152.

    Google Scholar 

  39. Miall, L.M. 1972. Stimulatory effect of organic acids in citric acid fermentation. British Patent Specification 1293786.

  40. Mian, F.A., T.R. Jarman and R.C. Righelato. 1978. Biosynthesis of exopolysaccharide byPseudomonas aeruginosa. J. Bacteriol 134: 418–422.

    PubMed  Google Scholar 

  41. Minakami, H., E. Entani, K. Tayama, S. Fujiyama and H. Masai. 1984. Isolation and characterisation of a new polysaccharide producingAcetobacter sp. Agric. Biol. Chem. 48: 2405–2414.

    Google Scholar 

  42. Nagai, S. and S. Aiba. 1972. Reassessment of maintenance energy and uncoupling in the growth ofAzotobacter vinelandii. J. Gen. Microbiol. 73: 531–538.

    PubMed  Google Scholar 

  43. Neijssel, O.M. 1977. The effect of 2,4-dinitrophenol on the growth ofKlebsiella aerogenes NCTC 418 in aerobic chemostat culture. FEMS Lett 1: 47–50.

    Google Scholar 

  44. Olijve, W. and J.J. Kok. 1979. Analysis of growth ofGluconobacter oxydans in chemostat culture. Arch. Microbiol. 121: 291–297.

    Google Scholar 

  45. Phillips, K.R. and H.G. Lawford. 1983. Theoretical maximum and observed product yield associated with curdlan production byAlcaligenes faecalis. Can. J. Microbiol. 29: 1270–1276.

    PubMed  Google Scholar 

  46. Powell, K.A., B.A. Collinson and K.R. Richardson. 1980. Microbiological process for the production of poly(beta-hydroxybutyric acid) and micro-organisms for use therein. European Patent Application 001 5669.

  47. Railton, K., D. Farago, C.R. MacKenzie, G.R. Lawford, J. Pik, H.G. Lawford and M. Moo-Young. 1981. Gel-forming exopolysaccharide production byAlcaligenes faecalis grown in nitrogen-limited continuous culture. In: Advances in Biotechnology: Proceedings of the 6th International Fermentation Symposium (Robinson, C. and C. Vezina, eds.), pp. 243–248, Pergamon Press, Toronto.

    Google Scholar 

  48. Ratledge, C. 1978. Lipids and fatty acids. In: Economic Microbiology, Vol. 2 (Rose, A.H., ed.), pp. 263–302, Academic Press, London.

    Google Scholar 

  49. Reference deleted.

  50. Rye, A.J., J.W. Drozd, C.W. Jones and J.D. Linton. 1988. Growth energetics ofXanthomonas campestris in continuous culture. J. Gen. Microbiol. 134: 1055–1061.

    Google Scholar 

  51. Sardinas, J.L. and G. Ferry. 1973. Fermentation process for the production of citric acid. United States Patent Office 3, 708, 399.

    Google Scholar 

  52. Schlegel, H.G. and R.M. Lafferty. 1971. Novel energy and carbon sources. Production of biomass from hydrogen and carbon dioxide. Adv. Biochem. Eng. 1: 143–168.

    Google Scholar 

  53. Stouthamer, A.H. 1977. Energetic aspects of the growth of microorganism. In: Microbial Energetics: Society for General Microbiology, Symposium No. 27 (Haddock, B.A. and W.A. Hamilton, eds.), pp. 285–315, Cambridge University Press, Cambridge.

    Google Scholar 

  54. Stouthamer, A.H. 1979. The search for correlation between theoretical and experimental growth yields. In: International Reviews of Biochemistry. Microbial Biochemistry, Vol. 21 (Quayle, J.R., ed.), pp. 1–47, University Park Press, Baltimore, MD.

    Google Scholar 

  55. Stouthamer, A.H. and H.W. van Verseveld. 1985. In: Comprehensive Biotechnology, Vol. 1 (Moo-Young, M., ed.), pp. 215–238, Pergamon Press, Oxford.

    Google Scholar 

  56. Sutherland, I.W. 1982. Biosynthesis of microbial exopolysaccharides. Adv. Microb. Physiol. 23: 80–150.

    Google Scholar 

  57. Takayama, T., F. Endo, T. Nozawa, Y. Masuda, M. Mori and T. Kanayama. 1980. Process for producing a polysaccharide usingPseudomonas polysaccharogenes M-30. United States Patent 4, 230, 800.

    Google Scholar 

  58. Tanahill, A.L. and R.K. Finn. 1978. Improved process for the production of polysaccharide by fermentation of aqueous methanol. British Patent Specification 1509 684.

  59. Tanaka, K., T. Iwasaki and S. Kinoshita. 1960. Studies onl-glutamic acid fermentation. Part 5. Biotin andl-glutamic acid accumulation by bacteria. J. Agric. Chem. Soc. (Japan) 34: 593–600.

    Google Scholar 

  60. Tanaka, K., K. Machida-Shi and K. Yamaguchi. 1969. Process for producingl-glutamic acid and alpha-ketoglutaric acid. United States Patent Office 3, 450, 599.

    Google Scholar 

  61. Vandersilce, R.W. 1987. A polysaccharide polymer made byXanthomonas. European Patent Application, Publication No. 0211288.

  62. Weenk, G., W. Olijve and W. Harder. 1984. Ketogluconate formation byGluconobacter species. Appl. Microbiol. Biotechnol. 20: 400–405.

    Google Scholar 

  63. Williams, A.G. and J.W.T. Wimpenny. 1978. Exopolysaccharide production byPseudomonas NCIB 11264 grown in continuous culture. J. Gen. Microbiol. 104: 47–57.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linton, J.D., Rye, A.J. The relationship between the energetic efficiency in different micro-organisms and the rate and type of metabolite overproduced. Journal of Industrial Microbiology 4, 85–96 (1989). https://doi.org/10.1007/BF01569792

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01569792

Key words

Navigation