Skip to main content
Log in

Glucose and acetate influences on the behavior of the recombinant strainEscherichia coli HB 101 (GAPDH)

  • Published:
Journal of Industrial Microbiology

Summary

This study highlights data about the production of a recombinant protein (glyceraldehyde-3-phosphate dehydrogenase) byE. coli HB 101 (GAPDH) during batch and fed-batch fermentations in a complex medium. From a small number of experiments, this strain has been characterized in terms of protein production performance and glucose and acetate influences on growth and recombinant protein production. The present results show that this strain is suitable for recombinant protein production, in fed-batch culture 55 g L−1 of biomass and 6 g L−1 of GAPDH are obtained. However this strain, and especially GAPDH overproduction is sensitive to glucose availability. During fermentations, maximum yields of GAPDH production have been obtained in batch experiments for glucose concentration of 10 g L−1, and in fed-batch experiments for glucose availability of 10 g h−1 (initial volume 1.5 L). The growth of the strain and GAPDH overproduction are also inhibited by acetate. Moreover acetate has been noted as an activator of its own formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyer, H.W. and D. Roulland-Dussoix. 1969. A complementation analysis of the restriction modification of DNA inEscherichia coli. J. Mol. Biol. 41: 459–472.

    PubMed  Google Scholar 

  2. Branlant, G., G. Flesh and C. Branlant. 1983. Molecular biology of glyceraldehyde-3-phosphate dehydrogenase genes ofBacillus stearothermophilus andEscherichia coli. Gene 25: 1–7.

    PubMed  Google Scholar 

  3. Brown, S.W., H.-P. Meyer and A. Fiechter. 1985. Continuous production of human leukocyte interferon withEscherichia coli and continuous cell lysis in a two stages chemostat. Appl. Microbiol. Biotechnol. 23: 5–9.

    Google Scholar 

  4. Charpentier, B. and C. Branlant. 1994. TheEscherichia coli gapA gene is transcribed by the vegetative RNA polymerase holoenzyme Eσ p70 and the heat shock RNA polymerase Eσ p32. J. Bacteriol. Feb 1994: 380–389.

    Google Scholar 

  5. Curless, C.E., P.D. Forrer, M.B. Mann, D.M. Fenton and L.B. Tsai. 1989. Chemostat study of kinetics of human lymphokine synthesis in recombinantEscherichia coli. Biotechnol. Bioeng. 34: 415–421.

    Google Scholar 

  6. Doelle, H.W., K.N. Ewing and N.W. Hollywood. 1982. Regulation of bacterial metabolism in bacterial systems. Adv. Biochem. Eng. 23: 1–35.

    Google Scholar 

  7. El Houtaia, N., N. Nancib, G. Branlant, C. Branlant and J. Boudrant. 1989. Production of glyceraldehyde-3-phosphate dehydrogenase using genetically engineeredEscherichia coli. Biotechnol. Lett. 11: 775–778.

    Google Scholar 

  8. Ferdinand, W. 1964. Isolation and specific activity of rabbit muscle GAPDH. Biochem. J. 92: 1978–1985.

    Google Scholar 

  9. Fieschko, J. and T. Ritch. 1986. Production of human alpha consensus interferon to recombinantEscherichia coli. Chem. Eng. Commun. 45: 229–240.

    Google Scholar 

  10. Goldberg, A.L., K.H.S. Swamy, C.H. Chung and F.S. Larimore. 1981. Proteases inEscherichia coli. Methods Enzymol. 80: 680–702.

    PubMed  Google Scholar 

  11. Han, K., H.C. Lim and J. Hong. 1992. Acetic acid formation inEscherichia coli fermentation. Biotechnol. Bioeng. 39: 663–671.

    Google Scholar 

  12. Ishikawa, Y., Y. Nonoyama and M. Shoda. 1981. Calorimetric analysis ofEscherichia coli in batch culture. Biotechnol. Bioeng. 23: 2825–2856.

    Google Scholar 

  13. Jung, G., P. Denèfle, J. Becquart and J.F. Mayaux. 1988. High cell density fermentation studies of recombinantEscherichia coli expressing human interleukin-1β. Ann. Inst. Pasteur/Microbiol. 139: 129–146.

    Google Scholar 

  14. Kapralek, F., P. Jecmen, J. Sedlacek, M. Fabry and S. Zadrajil. 1991. Fermentation conditions for high level expression of thetac promoter controlled calf prochymosin cDNA inE. coli HB 101. Biotechnol. Bioeng. 37: 71–79.

    Google Scholar 

  15. Koh, B.T., U. Nakashimida, M. Pfeiffer and M.G.S. Yap. 1992. Comparison of acetate inhibition on growth of host and recombinantE. coli K12 strains. Biotechnol. Lett. 14: 1115–1118.

    Google Scholar 

  16. Konstantinov, K., M. Kishimoto, T. Sato and T. Yoshida. 1990. A balanced DO-Stat and its application to the control of acetic acid excretion by recombinantEsherichia coli. Biotechnol. Bioeng. 36: 750–758.

    Google Scholar 

  17. Lischke, H.H., L. Brandes, X. Wu and K. Schügerl. 1993. Influence of acetate on the growth of recombinantEsherichia coli JM103 and product formation. Bioproc. Eng. 9: 155–157.

    Google Scholar 

  18. Miller, C.G. 1987. Protein degradation and proteolytic modification. In:Escherichia coli andSalmonella typhimurium: Cellular and Molecular Biology, Vol. 1 (Neidhardt, F.C., J.L. Ingraham, K.B. Low, B. Magasanik, M. Schaechter, H.E. Umbarger, eds), pp. 680–691, American Society for Microbiology, Washington, DC.

    Google Scholar 

  19. Mougin, A.C., C. Corbier, A. Soukri, A. Wonacott, C. Branlant and G. Branlant. 1988. Use of site directed mutagenesis to probe the role of cystein 149 in the formation of charge transfer transmission. Prot. Eng. 2: 45–48.

    Google Scholar 

  20. Nancib, N., C. Branlant and J. Boudrant. 1991. Metabolic roles of peptone and yeast extract culture of a recombinant strain ofEscherichia coli. J. Ind. Microbiol. 8: 165–170.

    PubMed  Google Scholar 

  21. Nancib, N., R. Mosrati and J. Boudrant. 1993. Modelling of batch fermentation of a recombinantEscherichia coli producing glyceraldehyde-3-phosphate dehydrogenase on a complex selective medium. Chem. Eng. J. 52: B35-B48.

    Google Scholar 

  22. Pan, J.G., J.S. Rhee and J.M. Lebeault. 1987. Physiological constraints in increasing biomass concentration ofEscherichia coli in fed-batch culture. Biotechnol. Lett. 9: 89–94.

    Google Scholar 

  23. Peretti, S.W. and J.E. Bailey. 1987. Simultations of host-plasmid interactions inEscherichia coli: copy number, promoter strength, and ribosome binding site strength effects on metabolic activity and plasmid gene expression. Biotechnol. Bioeng. 29: 316–328.

    Google Scholar 

  24. Reiling, H.E., H. Laurila and A. Fiechter. 1985. Mass culture ofEscherichia coli: medium development for low and high density cultivation ofEscherichia coli B/r in minimal and complex medium. J. Biotechnol. 2: 191–206.

    Google Scholar 

  25. Shimizu, N., S. Fukuzono, K. Fujimori, N. Nishimura and Y. Odawara. 1988. Fed-batch culture of recombinantEscherichia coli with inhibitory substance concentration monitoring. J. Ferment. Technol. 66: 187–191.

    Google Scholar 

  26. Smirnova, G.V. and O.N. Oktyabr'skii. 1985. Influence of acetate on the growth ofEscherichia coli under aerobic and anaerobic conditions. Microbiology 54: 205–209.

    Google Scholar 

  27. Yee, L. and H.W. Blanch. 1992. Recombinant protein expression in high cell density fed-batch cultures ofEscherichia coli. Biotechnol. 10: 1550–1556.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gschaedler, A., Thi Le, N. & Boudrant, J. Glucose and acetate influences on the behavior of the recombinant strainEscherichia coli HB 101 (GAPDH). Journal of Industrial Microbiology 13, 225–232 (1994). https://doi.org/10.1007/BF01569753

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01569753

Key words

Navigation