Skip to main content
Log in

The cyclohexane moiety of rapamycin is derived from shikimic acid inStreptomyces hygroscopicus

  • Published:
Journal of Industrial Microbiology

Summary

Although the addition of shikimic acid to the medium had no effect on the level of production of rapamycin byStreptomyces hygroscopicus,14C-shikimic acid was incorporated into rapamycin to a very high degree.13C-Shikimic acid was successfully prepared from 1-[13C]-glucose using a mutant ofKlebsiella pneumoniae, and used to label rapamycin. It was found that13C-shikimic acid was incorporated into the cyclohexane moiety of rapamycin, thereby establishing the shikimic acid pathway origin of the seven-carbon starter unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Byrne, K.M., A. Shafiee, J.B. Nielsen, B. Arison, R.L. Monaghan and L. Kaplan. 1993. The biosynthesis and enzymology of an immunosuppressant, immunomycin, produced byStreptomyces hygroscopicus var.ascomycetius. In: Microbial Metabolites (Nash, C., J. Hunter-Cevera, R. Cooper, D.E. Eveleigh and R. Hamill, eds), pp. 29–45, Wm. C. Brown Publishers, Dubuque, Iowa.

    Google Scholar 

  2. Calne, R.Y., D.St.J. Collier, S. Lim, S.G. Pollard, A. Samann, D.J.G. White and S. Thiru. 1989. Rapamycin for immunosuppression in organ allografting. Lancet ii: 227.

    Google Scholar 

  3. Casati, R., J.M. Beale and H.G. Floss. 1987. Biosynthesis of ansatrienin. Nonincorporation of shikimic acid into the mC7N unit and stereochemistry of its conversion to the cyclohexanecarboxylic acid moiety. J. Am. Chem. Soc. 109: 8102–8104.

    Google Scholar 

  4. Cranswick, A.M. and J.A. Zabkiewicz. 1979. Quantitative analysis of monosaccharides, cyclitols, sucrose, quinic and shikimic acids inPinus radiata extracts on a glass support-coated open tubular capillary column by automated gas chromatography. J. Chromatog. 171: 233–242.

    Google Scholar 

  5. Degwert, U., R. Hulst, H. Pape, R.E. Herrold, J.M. Beale, P.J. Keller, J.P. Lee and H.G. Floss. 1987. Studies on the biosynthesis of the β-glucosidase inhibitor acarbose: valienamine, a m-C7N unit not derived from the shikimic pathway. J. Antibiot. 40: 855–861.

    PubMed  Google Scholar 

  6. Douros, J. and M. Suffness. 1981. New antitumor substances of natural origin. Cancer Treat. Rev. 8: 63–87.

    PubMed  Google Scholar 

  7. Dumont, F.J., M.J. Staruch, S.L. Koprak, M.R. Melino and N.H. Sigal. 1990. Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK-506 and rapamycin. J. Immunol. 141: 251–258.

    Google Scholar 

  8. Eng, C.P., S.N. Sehgal and C. Vezina. 1984. Activity of rapamycin (AY-22,989) against transplanted tumors. J. Antibiot. 37: 1231–1237.

    PubMed  Google Scholar 

  9. Floss, H.A., H. Cho, R. Casati, K.A. Reynolds, E. Kennedy, B.S. Moore, J.M. Beale, U.M. Mocek and K. Poralla. 1992. Diversions of the shikimate pathway — the biosynthesis of cyclohexanecarboxylic acid. In: Secondary Metabolite Biosynthesis and Metabolism (Petroski, R.J. and S.P. McCormick, eds), pp. 77–88, Plenum Press, New York.

    Google Scholar 

  10. Ghisalba, O. and J. Nuesch. 1981. A genetic approach to the biosynthesis of the rifamycin-chromophore inNocardia mediterranei. IV. Identification of 3-amino-5-hydroxybenzoic acid as a direct precursor of the seven-carbon amino starter unit. J. Antibiot. 34: 64–71.

    PubMed  Google Scholar 

  11. Gottschalk, G. 1979. Bacterial Metabolism. Springer-Verlag, New York.

    Google Scholar 

  12. Knowles, P.F. and D.B. Sprinson. 1970. Preparation of shikimate 5-phosphate. In: Methods in Enzymology, Vol. 17A (Tabor, H. and C.W. Tabor, eds), pp. 351–359, Academic Press, New York.

    Google Scholar 

  13. Martel, R.R., J. Klicus and S. Galet. 1977. Inhibition of the immune response by rapamycin, a new antifungal antibiotic. Can. J. Physiol. Pharmacol. 55: 48–51.

    PubMed  Google Scholar 

  14. McAlpine, J.B., S.J. Swanson, M. Jackson and D.N. Whittern. 1991. Revised NMR assignments for rapamycin. J. Antibiot. 44: 688–690.

    PubMed  Google Scholar 

  15. Millican, C.M. 1962. Biosynthesis of pyocyanine. Incorporation of14C-shikimic acid. Biochim. Biophys. Acta 57: 407–409.

    Google Scholar 

  16. Morris, R.E. and B.M. Meiser. 1989. Identification of a new pharmacologic action for an old compound. Med. Sci. Res. 17: 877–878.

    Google Scholar 

  17. Oshima, M., Y. Sakaki, T. Oshima. 1978. ω-Cyclohexyl fatty acids in acido-thermophilic bacterial membranes and phage capsids. In: Biochemistry of Thermophily (Friedman, S.M., ed.), pp. 31–44, Academic Press, New York.

    Google Scholar 

  18. Paiva, N.L., A.L. Demain and M.F. Roberts. 1991. Incorporation of acetate, propionate, and methionine into rapamycin byStreptomyces hygroscopicus. J. Nat. Prod. 54: 167–177.

    PubMed  Google Scholar 

  19. Paiva, N.L., A.L. Demain and M.F. Roberts. 1993. The immediate precursor of the nitrogen-containing ring of rapamycin is free pipecolic acid. Enzyme Microb. Technol. 15: 581–585.

    Google Scholar 

  20. Rosen, M.K., R.F. Standaert, A. Galat, M. Nakatsuka and S.L. Schreiber. 1990. Inhibition of FKBP rotamase activity by immunosuppressant FK506: twisted amid surrogate. Science 248: 863.

    PubMed  Google Scholar 

  21. Tanaka, H., A. Kuroda, H. Marusawa, H. Hatanaka, T. Kino, T. Goto, M. Hashimoto and T. Taga. 1987. Structure of FK506: a novel immunosuppressant isolated fromStreptomyces. J. Am. Chem. Soc. 109: 5031–5033.

    Google Scholar 

  22. Toyokuni, T., W.-Z. Jin and K.L. Rinehart, Jr. 1987. Biosynthetic studies on validamycins: A C2+C2+C3 pathway to an aliphatic C7N unit. J. Am. Chem. Soc. 109: 3481–3482.

    Google Scholar 

  23. Vezina, C., A. Kudelski and S.N. Sehgal. 1975. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot. 28: 721–726.

    PubMed  Google Scholar 

  24. Weiss, V. and E.S. Mingioli. 1956. Aromatic biosynthesis. 15. The isolation and identification of shikimate acid 5-phosphate. J. Am. Chem. Soc. 78: 2894–2898.

    Google Scholar 

  25. White, R.J. and E. Martinelli. 1974. Ansamycin biogenesis: Incorporation of [1-13C]glucose and [1-13C] glycerate into the chromophore of rifamycin S. FEBS Lett. 49: 233–236.

    PubMed  Google Scholar 

  26. Yoshida, S. and M. Hasegawa. 1957. A microcolorimetric method for the determination of shikimic acid. Arch. Biochem. Biophys. 70: 377–381.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paiva, N.L., Roberts, M.F. & Demain, A.L. The cyclohexane moiety of rapamycin is derived from shikimic acid inStreptomyces hygroscopicus . Journal of Industrial Microbiology 12, 423–428 (1993). https://doi.org/10.1007/BF01569676

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01569676

Key words

Navigation