Skip to main content
Log in

Filamentous growth ofPseudomonas aeruginosa

  • Original Papers
  • Published:
Journal of Industrial Microbiology

Summary

The growth of two strains ofPseudomonas aeruginosa in stirred batch cultures was monitored by optical density, DNA concentration, and acridine orange direct cell count measurements. Growth of adherent bacteria in pure culture was also observed on suspended glass discs by light and scanning electron microscopy. Strain MUCOID produced significant numbers of filamentous cells in broth culture and in the adherent population, while strain PAO 381 did not produce elongated cells. Filamentous growth of MUCOID could be prevented by the addition of 5 × 10−2 M Mg2+. However, the addition of 0.66 mM EDTA caused an increased proportion of the population (>50%) of MUCOID cells to become filamentous in broth culture. The results are discussed and related to theories regarding bacterial plasticity, and filamentation of normally bacillary cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aftring, R.P. and B. Taylor. 1979. Assesment of microbial fouling in an ocean thermal conversion project. Appl. Environ. Microbiol. 38: 734–739.

    Google Scholar 

  2. Allen, M.J., H.T. Raymond and E.E. Geldreich. 1980. The occurrence of microorganisms in water main encrustations. J. Am. Water Works Assoc. 72: 614–625.

    Google Scholar 

  3. Brown, M.R.W. and P. Williams. 1985. The influence of environment on envelope properties affecting survival of bacteria in infections. Annu. Rev. Microbiol. 39: 527–556.

    PubMed  Google Scholar 

  4. Buchanan, R.E. and N.E. Gibbons. 1974. Bergey's Manual of Determinative Bacteriology. 8th Edn., Williams and Wilkins, Baltimore, 1268 pp.

    Google Scholar 

  5. Costerton, J.W. 1980. Some techniques involved in study of adsorption of microorganisms to surfaces. In: Adsorption of Microorganisms to Surfaces (Britton, G. and K.C. Marshall, eds.), pp. 403–428, John Wiley and Sons, New York.

    Google Scholar 

  6. Costerton, J.W., R.T. Irvin and K.-J. Cheng. 1981. The bacterial glycocalyx in nature and disease. Annu. Rev. Microbiol. 35: 299–324.

    PubMed  Google Scholar 

  7. Jensen, R.H. and C.A. Woolfolk. 1985. Formation of filaments byPseudomonas putida. Appl. Environ. Microbiol. 50: 364–372.

    Google Scholar 

  8. Labarca, C. and K. Paigen. 1980. A simple, rapid and sensitive DNA assay procedure. Anal. Biochem. 102: 344–352.

    PubMed  Google Scholar 

  9. Lorian, V., B.A. Atkinson and L. Amaral. 1979. Effects of sub-minimum inhibitory concentrations of antibiotics onPseudomonas aeruginosa: The MIC/MAC ratio. In:Pseudomonas aeruginosa (Sabath, C.D., ed.), Hans Huber Publisher, Bern.

    Google Scholar 

  10. Lorian, V., B.A. Atkinson, A. Waluschka and Y. Kim. 1982. Ultrastructure, in vitro and in vivo, of Staphylococci exposed to antibiotics. Curr. Microbiol. 7: 301–305.

    Google Scholar 

  11. McCoy, J.W. 1980. Microbiology of Cooling Water, 234 pages, Chemical Publishing Company, New York.

    Google Scholar 

  12. McCoy, W.F., J.D. Bryers, J. Robbins and J.W. Costerton. 1981. Observations of fouling biofilm formation. Can. J. Microbiol. 27: 910–917.

    PubMed  Google Scholar 

  13. McCoy, W.F. and J.W. Costerton. 1982. Fouling biofilm development in tubular flow systems. Dev. Ind. Microbiol. 23: 551–558.

    Google Scholar 

  14. McCoy, W.F. and J.W. Costerton. 1982. Growth of sessileSphaerotilus natans in a tubular recycle system. Appl. Environ. Microbiol. 43: 1490–1494.

    Google Scholar 

  15. Nickel, J.C., J.B. Wright, I. Ruseska, T.J. Marrie, C. Whitfield and J.W. Costerton. 1985. Antibiotic resistance ofPseudomonas aeruginosa colonizing urinary catheter material. Eur. J. Clin. Microbiol. 4: 213–218.

    PubMed  Google Scholar 

  16. Picologlou, B.F., N. Zelver and W.G. Characklis. 1980. Biofilm growth and hydraulic performance. J. Hydraul. Div. HY5: 733–746.

    Google Scholar 

  17. Ridgeway, H.F. and B.H. Olson. 1981. Scanning electron microscope evidence for bacterial colonization of a drinking water distribution system. Appl. Environ. Microbiol. 41: 274–287.

    PubMed  Google Scholar 

  18. Slater, M., and M. Schaecter. 1974. Control of cell division of bacteria. Bacteriol. Rev. 38: 191–221.

    Google Scholar 

  19. Spurr, A. 1969. A low viscosity epoxy resin embedding medium for electron microsocpy. J. Ultrastruct. Res. 26: 31–41.

    PubMed  Google Scholar 

  20. Wardell, J.N., C.M. Brown and D.C. Ellwood. 1980. A continuous culture study of the attachment of bacteria to surfaces. In: Microbial Adhesion to Surfaces (Berkeley, R.C.W. et al., eds.), pp. 221–229, Ellis Horwood, Chichester.

    Google Scholar 

  21. Wyndham, R.C. and J.W. Costertom. 1981. In vitro microbial degradation of bituminous hydrocarbons and in situ colonization of bitumen surfaces within the Athabasca oil sands deposit. Appl. Environ. Microbiol. 41: 791–800.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, J.B., Costerton, J.W. & McCoy, W.F. Filamentous growth ofPseudomonas aeruginosa . Journal of Industrial Microbiology 3, 139–146 (1988). https://doi.org/10.1007/BF01569520

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01569520

Key words

Navigation