Skip to main content
Log in

Subcellular distribution of polysaccharide depolymerase and glycoside hydrolase enzymes in rumen ciliate protozoa

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The distribution of polysaccharide depolymerase and glycoside (acid) hydrolase activity in nine genera of rumen entodiniomorphid and holotrich ciliate protozoa was examined by differential centrifugation. Sedimentable activity was detected in all of the protozoa examined and occurred principally in fractions that were prepared by centrifugation at 1000g for 10 min, 10,000g for 10 min, and 20,000g for 20 min (fractions F1, F2, and F3). Acid phosphatase was present in these subcellular fractions which contained membrane-bound vesicles 0.1–0.8 μm in size. The enzyme location profile of the subcellular fractions differed within the genera examined. The distribution of the enzyme activity in the subcellular fractions indicated the presence of distinct populations of hydrolase-containing organelles and other functional vesicles in the rumen ciliates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Coleman GS (1983) The cellulase content of 15 species of entodiniomorphid protozoa, mixed bacteria and plant debris isolated from the ovine rumen. J Agric Sci Camb 104:349–360

    Google Scholar 

  2. Coleman GS, Hall FJ (1969) Electron microscopy of the rumen ciliateEntodinium caudatum with special reference to the engulfment of bacterial and other particulate matter. Tissue Cell 1:607–618

    Google Scholar 

  3. Coleman GS, Hall FJ (1974) The metabolism ofEpidinium ecaudatum caudatum andEntodinium caudatum as shown by autoradiography in the electron microscope. J Gen Microbiol 85:265–273

    PubMed  Google Scholar 

  4. Coleman GS, Sandford DC (1979) The engulfment and digestion of mixed rumen bacteria and individual bacterial species by single and mixed species of rumen protozoa grown in vivo. J Agric Sci Camb 92:729–742

    Google Scholar 

  5. Coleman GS, Sandford DC, Beahon S (1980) The degradation of polygalacturonic acid by rumen ciliate protozoa. J Gen Microbiol 120:295–300

    PubMed  Google Scholar 

  6. Delfosse J (1977) Ultrastructure de l'endoplasme des Ophryoscolescides. Cellule 72:77–90

    Google Scholar 

  7. Furness DN, Butler RD (1983) The cytology of sheep rumen ciliates. 1. Ultrastructure ofEpindinium ecaudatum Crawley. J Protozool 30:676–687

    Google Scholar 

  8. Furness DN, Butler RD (1987) The cytology of sheep rumen ciliates 2. Ultrastructure ofEudiplodinium maggii. J Protozool 32:205–214

    Google Scholar 

  9. Grain J (1966) Etude cytologique de quelques cilies holotrichs endocommensaux des ruminants et des equides. Protistologica 2:5–141

    Google Scholar 

  10. Hellings P, Debois M, Daubresse P, Thines-Sempoux D (1981) Subcellular distribution of hydrolytic activities in the rumen ciliates Ophryoscolecidae. Arch Int Physiol Biochim 89:B170-B172

    Google Scholar 

  11. Imai S, Katsuno M, Tsunoda K (1977) Scanning electron microscopy of rumen ciliates in cattle. Dobutsugaku Zasshi [Zool Mag] 86:194–207

    Google Scholar 

  12. Level M (1977) Carbohydrate determination with 4-hydroxybenzoic acid hydrazide (PAHBAH): effect of bismuth on the reaction. Anal Biochem 81:21–27

    PubMed  Google Scholar 

  13. Lindmark DG, Muller M (1974) Biochemical cytology of Trichomonad flagellates: II. Subcellular distribution of oxidoreductases and hydrolases inMonocercomonas sp. J Protozool 21:374–378

    PubMed  Google Scholar 

  14. Lloyd D, Poole RK (1979) Subcellular fractionation, isolation and characterization of organelles. Tech Metab Res B202:1–27

    Google Scholar 

  15. Lowry OH, Rosebrough WJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-phenol reagent. J Biol Chem 193:265–275

    PubMed  Google Scholar 

  16. Miller GL, Blum R, Glennon WE, Burton AL (1960) Measurement of carboxymethylcellulase activity. Anal Biochem 2:127–132

    Google Scholar 

  17. Muller M (1973) Biochemical cytology of Trichomonad flagellates: 1. Subcellular localization of hydrolases, dehydrogenases and catalase inTritrichomonas foetus. J Cell Biol 57:453–474

    PubMed  Google Scholar 

  18. Muller M, Baudhuin P, De Duve C (1966) Lysosomes inTetrahymena pyriformis: 1. Some properties and lysosomal localization of acid hydrolases. J Cell Physiol 68:165–176

    PubMed  Google Scholar 

  19. Orpin CG, Hall CJ (1983) Surface structures of the rumen holotrich protozoonIsotricha intestinalis with particular reference to the attachment zone. Curr Microbiol 8:321–325

    Google Scholar 

  20. Roth LE, Shigenaka Y (1964) The structure and formation of cilia and filaments in rumen protozoa. J Cell Biol 20:249–270

    PubMed  Google Scholar 

  21. Stern MD, Hoover, WH, Summers RG, Rittenburg JH (1977) Ultrastructure of rumen entodiniomorphs by electron microscopy. J Dairy Sci 60:902–910

    PubMed  Google Scholar 

  22. Stern MD, Hoover WH, Leonard JB (1977) Ultrastructure of rumen holotrichs by electron microscopy. J Dairy Sci 60:911–918

    PubMed  Google Scholar 

  23. Thines-Sempoux D, Delfosse-Debusscher J, Lefebvre V, Absil JP, Hellings P (1980) Aspects of “bacteria-ciliates” symbiosis in the rumen: postulated role of the bacteria in the digestive system of the ciliate. In: Schwemmler W, Schenk HEA (eds) Endocytobiology: endosymbiosis and cell biology, a synthesis of recent research. Proceedings of the international colloquium on endosymbiosis and cell research. Berlin: Walter de Gruyter, pp 371–379

    Google Scholar 

  24. Williams AG (1979) Exocellular carbohydrase formation by rumen holotrich ciliates. J Protozool 26:665–672

    Google Scholar 

  25. Williams AG, Coleman GS (1985) Hemicellulose-degrading enzymes in rumen ciliate protozoa. Curr Microbiol 12:85–90

    Google Scholar 

  26. Williams AG, Ellis AB (1985) Subcellular distribution of glycoside hydrolase and polysaccharide depolymerase enzymes in the rumen entodiniomorphid ciliatePolyplastron multivesiculatum. Curr Microbiol 12:175–182

    Google Scholar 

  27. Williams AG, Strachan NH (1984) The distribution of polysaccharide-degrading enzymes in the bovine rumen digesta ecosystem. Curr Microbiol 10:215–220

    Google Scholar 

  28. Williams AG, Yarlett N (1982) An improved technique for the isolation of holotrich protozoa from rumen contents by differential filtration with defined aperture textiles. J Appl Bacteriol 52:267–270

    Google Scholar 

  29. Williams AG, Withers SE, Coleman GS (1984) Glycoside hydrolases of rumen bacteria and protozoa. Curr Microbiol 10:287–294

    Google Scholar 

  30. Yarlett N, Hann AC, Lloyd D, Williams AG (1981) Hydrogenosomes in the rumen protozoonDasytricha ruminantium Schuberg. Biochem J 200:365–372

    PubMed  Google Scholar 

  31. Yarlett N, Hann AC, Lloyd D, Williams AG (1983) Hydrogenosomes in a mixed isolate ofIsotricha prostoma andIsotricha intestinalis from ovine rumen contents. Comp Biochem Physiol 74B:357–364

    Google Scholar 

  32. Yarlett N, Coleman GS, Williams AG, Lloyd D (1984) Hydrogenosomes in known species of rumen entodiniomorphid protozoa. FEMS Microbiol Lett 21:15–19

    Google Scholar 

  33. Yarlett N, Lloyd D, Williams AG (1985) Butyrate formation from glucose by the rumen protozoonDasytricha ruminantium. Biochem J 228:187–192

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, A.G., Ellis, A.B. & Coleman, G.S. Subcellular distribution of polysaccharide depolymerase and glycoside hydrolase enzymes in rumen ciliate protozoa. Current Microbiology 13, 139–147 (1986). https://doi.org/10.1007/BF01568509

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01568509

Keywords

Navigation