Skip to main content
Log in

Nonlinear optical investigations of the dynamics of hydrogen interaction with silicon surfaces

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Optical second-harmonic generation (SHG) from silicon surfaces may be resonantly enhanced by dangling-bond-derived surface states. The resulting high sensitivity to hydrogen adsorption combined with unique features of SHG as an optical probe has been exploited to study various kinetical and dynamical aspects of the adsorption system H2/Si. Studies of surface diffusion of H/Si(111)7×7 and recombinative desorption of hydrogen from Si(111)7 × 7 and Si(100)2 × 1 revealed that the covalent nature of hydrogen bonding on silicon surfaces leads to high diffusion barriers and to desorption kinetics that strongly depend on the surface structure. Recently, dissociative adsorption of molecular hydrogen on Si(100)2×1 and Si(111)7×7 could be observed for the first time by heating the surfaces to temperatures between 550 K and 1050 K and monitoring the SH response during exposure to a high flux of H2 or D2. The measured initial sticking coefficients for a gas temperature of 300K range from 10−9 to 10−5 and strongly increase as a function of surface temperature. These results demonstrate that the lattice degrees of freedom may play a decisive role in the reaction dynamics on semiconductor surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Jasinski, B. S. Meyerson, and B. A. Scott, Annu. Rev. Phys. Chem.38, 109 (1987)

    Google Scholar 

  2. W. Kern, Semicond. Int.,7, 94 (1984); E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, and T. B. Bright, Phys. Rev. Lett.57, 249 (1986); G. S. Higashi, Y. J. Chabal, G. W. Trucks, and K. Raghavachari, Appl. Phys. Lett.56, 656 (1990)

    Google Scholar 

  3. H. Ibach and J. E. Rowe, Surf. Sci.43, 481 (1974); T. Sakurai and H. D. Hagstrum, Phys. Rev. B12, 5349 (1975); J. A. Appelbaum and D. R. Hamann, Phys. Rev. Lett.34, 806 (1975); K. C. Pandey, Phys. Rev. B 14, 1557 (1976); Y. J. Chabal and K. Raghavachari, Phys. Rev. Lett.53, 282 (1984)

    Google Scholar 

  4. J. A. Appelbaum and D. R. Hamann, in:Theory of Chemisorption, Topics in Current Physics Vol. 19, ed. J. R. Smith (Springer, Berlin 1980), p. 43

    Google Scholar 

  5. P. Guyot-Sionnest, P. Dumas, Y. J. Chabal and G. S. Higashi, Phys. Rev. Lett.64, 2156 (1990); P, Guyot-Sionnest, ibid66, 1489 (1991)

    Google Scholar 

  6. M. Morin, P. Jakob, N. J. Levinos, Y. J. Chabal, and A. L. Harris, J. Chem. Phys.96, 6302 (1992); K. Kuhnke, M. Morin, P. Jakob, N. J. Levinos, Y. J. Chabal, and A. L. Harris, ibid99, 6114 (1993)

    Google Scholar 

  7. G. A. Reider, U. Höfer, and T. F. Heinz, J. Chem. Phys.94, 4080 (1991)

    Google Scholar 

  8. U. Höfer, Leping Li, and T. F. Heinz, Phys. Rev. B45, 9485 (1992)

    Google Scholar 

  9. G. A. Reider, U. Höfer, and T. F. Heinz, Phys. Rev. Lett.66, 1994 (1991)

    Google Scholar 

  10. P. Bram and U. Höfer, Phys. Rev. Lett.74, 1625 (1995)

    Google Scholar 

  11. P. Bratu, K. L. Kompa, and U. Höfer, Chem. Phys. Lett.251 1 (1996)

    Google Scholar 

  12. P. Bratu, W. Brenig, A. Gross, M. Hartmann, U. Höfer, P. Kratzer, and R. Russ, Phys. Rev. B54, 5978 (1996)

    Google Scholar 

  13. Y. R. Shen,The principles of nonlinear optics (Wiley, New York 1984)

    Google Scholar 

  14. T. F. Heinz, in:Nonlinear Surface Electromagnetic Phenomena, eds. H.-E. Ponath and G. I. Stegeman (North-Holland, Amsterdam 1991), p. 353

    Google Scholar 

  15. A. Goldmann and F. Träger (eds)Surface Studies by Nonlinear Laser Spectroscopies (Springer, Heidelberg 1995)

    Google Scholar 

  16. K. Takayanagi, Y. Tanishiro, S. Takahashi, and M. Takahashi, Surf. Sci.164, 367 (1985)

    Google Scholar 

  17. F. J. Himpsel, Surf. Sci. Rep.12, 1 (1990)

    Google Scholar 

  18. G. A. Schmitt and U. Höfer, Verhandl. DPG (VI)30, 1613 (1995); and to be published

    Google Scholar 

  19. W. Daum, H.-J. Krause, U. Reichel, and H. Ibach, Phys. Rev. Lett.71, 1234 (1993)

    Google Scholar 

  20. S. Sakurai, Y. Hasegawa, T. Hashizume, I. Kamiya, T. Ide, I. Sumita, H. W. Pickering, and S. Hyodo, J. Vac. Sci. Technol. A8, 259 (1990);

    Google Scholar 

  21. J. J. Boland, Surf. Sci.244, 1 (1991)

    Google Scholar 

  22. S. Hollemann and F. Rebentrost, Surf. Sci.331, 1342 (1995)

    Google Scholar 

  23. K. Pedersen and P. Morgen, Phys. Rev. B.52, R2277 (1995)

    Google Scholar 

  24. J. J. Boland, Phys. Rev. Lett.67, 1539 (1991)

    Google Scholar 

  25. U. Höfer, G. A. Ratzlaff, Leping Li, and T. F. Heinz, Phys. Rev. B52, 5264 (1995)

    Google Scholar 

  26. J. T. Law, J. Chem. Phys.30, 1568 (1959)

    Google Scholar 

  27. G. Schulze and M. Henzler, Surf. Sci.124, 336 (1983)

    Google Scholar 

  28. B. G. Koehler, C. H. Mak, D. A. Arthur, P. A. Coon, and S. M. George, J. Chem. Phys.89, 1709 (1988)

    Google Scholar 

  29. K. Sinniah, M. G. Sherman, L. B. Lewis, W. H. Weinberg, J. T. Yates, Jr., and K. C. Janda, Phys. Rev. Lett.62, 567 (1989); J. Chem. Phys.92, 5700 (1990)

    Google Scholar 

  30. X. Jin, Y. Feng, Ch. Zhuang, and X. Wang,Proceedings of the 17th international Conference on the Physics of Semiconductors, ed. J. D. Chadi, W. A. Harrison, (Springer-Verlag, New York, 1984)

    Google Scholar 

  31. W. Widdra, S. I. Yi, R. Maboudian, G. A. D. Briggs, and W. H. Weinberg, Phys. Rev. Lett.74, 2074 (1995)

    Google Scholar 

  32. D. Menzel, in:Interactions on Metal Surfaces. Topics in Applied Physics, Vol. 4, ed. R. Gomer (Springer, Berlin 1975), p. 101

    Google Scholar 

  33. A. Vittadini and A. Selloni, Phys. Rev. Lett.75, 4756 (1995)

    Google Scholar 

  34. H. Lim, K. Cho, I. Park, J. D. Joannopoulos, and E. Kaxiras, Phys. Rev. B52, 17231 (1995)

    Google Scholar 

  35. M. L. Wise, B. G. Koehler, P. Gupta, P. A. Coon, and S. M. George, Surf. Sci.258, 166 (1991)

    Google Scholar 

  36. M. C. Flowers, N. B. H. Jonathan, Y. Liu, and A. Morris, J. Chem. Phys.102 1034 (1995)

    Google Scholar 

  37. M. P. D'Evelyn, Y. L. Yang, and L. F. Suctu, J. Chem. Phys.96, 852 (1992)

    Google Scholar 

  38. C. J. Wu and E. A. Carter, Chem. Phys. Lett.185, 172 (1991)

    Google Scholar 

  39. P. Nachtigall, K. D. Jordan, and K. C. Janda, J. Chem. Phys.95, 8652 (1991)

    Google Scholar 

  40. J. E. Northrup, Phys. Rev. B.51, 2218 (1995)

    Google Scholar 

  41. A. Vittadini, A. Selloni, and M. Casarin, Phys. Rev. B.49, 11191 (1994)

    Google Scholar 

  42. M. C. Flowers, N. B. H. Jonathan, Y. Liu, and A. Morris, J. Chem. Phys.99 7038 (1993)

    Google Scholar 

  43. C. J. Wu, I. V. Ionova, and E. A. Carter, Surf. Sci.295, 64 (1993)

    Google Scholar 

  44. Z. Jing and J. L. Whitten, J. Chem. Phys.98, 7466 (1993); ibid102, 3867 (1995)

    Google Scholar 

  45. P. Nachtigall, K. D. Jordan and C. Sosa, J. Chem. Phys.101, 2648 (1994)

    Google Scholar 

  46. Z. Jing, G. Lucovsky and J. L. Whitten, Surf. Sci.296, L33 (1993)

    Google Scholar 

  47. K. W. Kolasinski, Int. J. Mod. Phys. B21, 2753 (1995)

    Google Scholar 

  48. P. Kratzer, B. Hammer, and J. K. Nørskov, Chem. Phys. Lett.229, 645 (1994); Phys. Rev. B51, 13432 (1995)

    Google Scholar 

  49. E. Pehlke and M. Scheffler, Phys. Rev. Lett.74, 952 (1995)

    Google Scholar 

  50. A. Vittadini and A. Selloni, Chem. Phys. Lett.235, 334 (1995)

    Google Scholar 

  51. G. Li, Y.-Ch. Chang, R. Tsu, and J. E. Greene, Surf. Sci.330, 20 (1995)

    Google Scholar 

  52. S. Pai and D. Doren, J. Chem. Phys.103, 1232 (1995)

    Google Scholar 

  53. W. R. Wampler, S. M. Myers, and D. M. Follstaedt Phys. Rev. B48, 4492 (1993)

    Google Scholar 

  54. K. L. Brower and S. M. Myers, Appl. Phys. Lett.57, 162 (1990)

    Google Scholar 

  55. S. F. Shane, K. W. Kolasinski, and R. N. Zare, J. Chem. Phys.97, 1520 (1992)

    Google Scholar 

  56. S. F. Shane, K. W. Kolasinski, and R. N. Zare, J. Chem. Phys.97, 3704 (1992)

    Google Scholar 

  57. K. W. Kolasinski, W. Nessler, A. De Meijere, and E. Hasselbrink, Phys. Rev. Lett.72, 1356 (1994)

    Google Scholar 

  58. R. Gomer, Rep. Prog. Phys.53, 917 (1990)

    Google Scholar 

  59. X. D. Zhu, Th. Rasing, and Y. R. Shen, Phys. Rev. Lett.61, 2883 (1988)

    Google Scholar 

  60. B. M. Rice, L. M. Raff, and D. L. Thompson, J. Chem. Phys.88, 7221 (1988)

    Google Scholar 

  61. C. J. Wu and E. A. Carter, Phys. Rev. B46, 4651 (1992)

    Google Scholar 

  62. A. Vittadini, A. Selloni, and M. Casarin, Surf. Sci.289, L625 (1993)

    Google Scholar 

  63. C. J. Wu, I. V. Ionova, and E. A. Carter, Phys. Rev. B49, 13488 (1994)

    Google Scholar 

  64. P. Nachtigall and K. D. Jordan, J. Chem. Phys.102, 8249 (1995)

    Google Scholar 

  65. D. C. Sorescu, D. L. Thompson, and L. M. Raff, J. Chem. Phys.101, 1638 (1994)

    Google Scholar 

  66. M. Liehr, C. M. Greenlief, M. Offenberg, and S. R. Kasi, J. Vac. Sci. Technol. A8, 2960 (1990)

    Google Scholar 

  67. A. Winkler and K. D. Rendulic, Int. Rev. Phys. Chem.11, 101 (1992)

    Google Scholar 

  68. H. A. Michelsen, C. T. Rettner, and D. J. Auerbach, inStuface Reactions, ed. R. J. Madix (Springer, Berlin 1994), p. 185

    Google Scholar 

  69. W. Brenig, A. Gross, and R. Russ, Z. Phys. B.96, 231 (1994)

    Google Scholar 

  70. K. W. Kolasinski, W. Nessler, K. H. Bornscheuer, and E. Hasselbrink, J. Chem. Phys.101, 7082 (1994)

    Google Scholar 

  71. W. Brenig, T. Brunner, A. Gross, and R. Russ Z. Phys. B93, 91 (1993)

    Google Scholar 

  72. A. C. Luntz and J. Harris, Surf. Sci.258, 397 (1991)

    Google Scholar 

  73. A. C. Luntz and P. Kratzer, J. Chem. Phys.104, 3075 (1996)

    Google Scholar 

  74. A. Groß, B. Hammer, M. Scheffler, and W. Brenig, Phys. Rev. Lett.73, 3121 (1994)

    Google Scholar 

  75. W. Brenig, A. Groß, U. Höfer and R. Russ, Physica Status Solidi A159 (Jan. 1997, in press)

  76. M. R. Radeke und E. A. Carter, Surf. Sci.355, L289 (1996)

    Google Scholar 

  77. Y. J. Chabal and K. Raghavachari, Phys. Rev. Lett.53, 282 (1984); Phys. Rev. Lett.54, 1055 (1985)

    Google Scholar 

  78. J. Dabrowski and M. Scheffler, Appl. Surf. Sci.56-58, 15 (1992)

    Google Scholar 

  79. R. A. Wolkow, Phys. Rev. Lett.68, 2636 (1994)

    Google Scholar 

  80. E. L. Bullock, R. Gunella, L. Patthey, T. Abukawa, S. Kono, C. R. Natoli, and L. S. O. Johansson, Phys. Rev. Lett.74, 2756 (1995)

    Google Scholar 

  81. P. Krüger, A. Mazur, J. Pollmann, and G. Wolfgarten, Phys. Rev. Lett.57, 1468 (1986); P. Krüger, and J. Pollmann, Phys. Rev. Lett.74, 1155 (1995)

    Google Scholar 

  82. P. Kratzer, R. Russ, and W. Brenig, Surf. Sci.345, 125 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Höfer, U. Nonlinear optical investigations of the dynamics of hydrogen interaction with silicon surfaces. Appl. Phys. A 63, 533–547 (1996). https://doi.org/10.1007/BF01567209

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01567209

PACS

Navigation